Hierarchical classification with reject option for live fish recognition
Tóm tắt
Từ khóa
Tài liệu tham khảo
Lee, D., Schoenberger, R.B., Shiozawa, D., Xu, X.Q., Zhan, P.C.: Contour matching for a fish recognition and migration-monitoring system. Proc. SPIE 5606(1), 37–48 (2004)
Ruff, B.P., Marchant, J.A., Frost, A.R.: Fish sizing and monitoring using a stereo image analysis system applied to fish farming. Aquac. Eng. 14(2), 155–173 (1995)
Strachan, N.J.C., Nesvadba, P., Allen, A.R.: Fish species recognition by shape analysis of images. Pattern Recognit. 23(5), 539–544 (1990)
Okamoto, M., Morita, S., Sato, T.: Fundamental study to estimate fish biomass around coral reef using 3-dimensional underwater video system. In: Proceedings of the OCEANS 2000 MTS/IEEE Conference and Exhibition, vol. 2, pp. 1389–1392 (2000)
Walther, D., Edgington, D.R., Koch, C.: Detection and tracking of objects in underwater video. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 1, pp. 544–549 (2004)
Rova, A., Mori, G., Dill, L.M.: One fish, two fish, butterfish, trumpeter: recognizing fish in underwater video. In: IAPR Conference on Machine Vision Applications, pp. 404–407 (2007)
Zion, B., Shklyar, A., Karplus, I.: In-vivo fish sorting by computer vision. Aquac. Eng. 22, 165–179 (June 2000)
Heithaus, M.R., Dill, L.M.: Food availability and tiger shark predation risk influence bottlenose dolphin habitat use. Ecology 83(2), 480–491 (2002)
Strachan, N.J.C.: Length measurement of fish by computer vision. Comput. Electron. Agric. 8(2), 93–104 (1993)
Toh, Y.H., Ng, T.M., Liew, B.K.: Automated fish counting using image processing. In: Proceedings of the International Conference on Computational Intelligence and Software Engineering, pp. 1–5 (2009)
Schettini, R., Corchs, S.: Underwater image processing: state of the art of restoration and image enhancement methods. EURASIP J. Adv. Signal Process 2010, 1–7 (Jan. 2010)
Strachan, N.J.C.: Recognition of fish species by colour and shape. Image Vis. Comput. 11, 2–10 (Jan. 1993)
Spampinato, C., Giordano, D., Salvo, R.D., Chen-Burger, Y.H., Fisher, R.B., Nadarajan, G.: Automatic fish classification for underwater species behavior understanding. In: Proceedings of the First ACM International Workshop on Analysis And Retrieval of Tracked Events and Motion in Imagery Streams, pp. 45–50 (2010)
Larsen, R., Ólafsdóttir, H., Ersbøll, B.: Shape and texture based classification of fish species. In: Proceedings of SCIA, pp. 745–749 (2009)
Caley, M.J., Carr, M.H., Hixon, M.A., Hughes, T.P., Jones, G.P., Menge, B.A.: Recruitment and the local dynamics of open marine populations. Annu. Rev. Ecol. Syst. 27, 477–500 (Jan. 1996)
Brehmer, P., Chi, T.D., Mouillot, D.: Amphidromous fish school migration revealed by combining fixed sonar monitoring (horizontal beaming) with fishing data. J. Exp. Mar. Biol. Ecol. 334, 139–150 (June 2006)
Nadarajan, G., Chen-Burger, Y., Fisher, R., Spampinato, C.: A flexible system for automated composition of intelligent video analysis. In: Proceedings of ISPA, pp. 259–264 (2011)
Chih-Chung, C., Chih-Jen, L.: LIBSVM: a library for support vector machines. ACM Trans. Intell. Syst. Technol. 2(3), 1–27 (2011)
Duan, K.-B., Keerthi, S.S.: Which is the best multiclass SVM method? An empirical study. In: Proceedings of the 6th International Conference on Multiple Classifier Systems (MCS’05), pp. 278–285. Springer, New York (2005)
Carlos, S., Alex, F.: A survey of hierarchical classification across different application domains. Data Min. Knowl. Discov. 22(1–2), 31–72 (2010)
Deng, J., Berg, A., Li, K., Fei-Fei, L.: What does classifying more than 10,000 image categories tell us? ECCV 6315, 71–84 (2010)
Gordon, A.D.: A review of hierarchical classification. J. R. Stat. Soc. 150(2), 119–137 (1987)
Mathis, C.: Classification using a hierarchical bayesian approach. In: Proceedings of ICPR, vol. 4, pp. 103–106 (2002)
Deng, J., Dong, W., Socher, R., Li, L., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: Proceedings of CVPR, pp. 248–255 (2009)
Platt, J.C.: Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods. In: Advances in Large Margin Classifiers, pp. 61–74. MIT Press, USA (1999)
Wang, Y.-C.F., Casasent, D.: A support vector hierarchical method for multi-class classification and rejection. In: Proceedings of the International Joint Conference on Neural Networks (IJCNN’09), pp. 3281–3288 (2009)
Rother, C., Kolmogorov, V., Blake, A.: GrabCut: interactive foreground extraction using iterated graph cuts. ACM Trans. Graph. (SIGGRAPH), 23, 309–314 (2004)
Mokhtarian, F., Suomela, R.: Robust image corner detection through curvature scale space. IEEE Trans. PAMI 20(12), 1376–1381 (1998)
He, X.C., Yung, N.H.C.: Curvature scale space corner detector with adaptive threshold and dynamic region of support. In: Proceedings of the International Conference on Pattern Recognition, vol. 2, pp. 791–794. IEEE Computer Society (2004)
Saeys, Y., Inza, In, Larrañaga, P.: A review of feature selection techniques in bioinformatics. Bioinformatics 23(19), 2507–2517 (2007)
Flusser, J., Zitova, B., Suk, T.: Moments and moment invariants in pattern recognition. Wiley (2009)
Flusser, J., Suk, T., Zitova, B.: Affine moment invariants. In: Moments and Moment Invariants in Pattern Recognition, p. 49C112, Wiley, New York (2009)
Bosch, A., Zisserman, A., Munoz, X.: Representing shape with a spatial pyramid kernel. In: Proceedings of the 6th ACM International Conference on Image and Video Retrieval (CIVR’07), p. 401C408. ACM, New York (2007)
Bishop, C.M.: Neural Networks for Pattern Recognition. Oxford University Press Inc, Oxford (1995)
Mckenna, S.J., Gong, S., Raja, Y.: Modelling facial colour and identity with Gaussian mixtures. Pattern Recognit. 31, 1883–1892 (1998)
Shental, N., Bar-hillel, A., Hertz, T., Weinshall, D.: Computing Gaussian mixture models with EM using equivalence constraints. In: Advances in Neural Information Processing Systems, vol. 16, MIT Press, USA (2003)
Figueiredo, M.A.T., Jain, A.: Unsupervised learning of finite mixture models. IEEE Trans. Pattern Anal. Mach. Intell. 24(3), 381–396 (2002)
Zhao, Y., Karypis, G., Du, D.-Z.: Criterion functions for document clustering. University of Minnesota (2005)
Boom, B., Huang, P., He, J., Fisher, R.: Supporting ground-truth annotation of image datasets using clustering. In: Proceedings of the 21st International Conference on Pattern Recognition (ICPR), pp. 1542–1545 (2012)
Hastie, T., Tibshirani, R., Friedman, J.J.H.: The Elements of Statistical Learning, vol. 1. Springer, New York (2001)