Hierarchical classification with reject option for live fish recognition

Phoenix X. Huang1, Bas Boom1, Robert B. Fisher1
1Edinburgh, UK

Tóm tắt

Từ khóa


Tài liệu tham khảo

Lee, D., Schoenberger, R.B., Shiozawa, D., Xu, X.Q., Zhan, P.C.: Contour matching for a fish recognition and migration-monitoring system. Proc. SPIE 5606(1), 37–48 (2004)

Ruff, B.P., Marchant, J.A., Frost, A.R.: Fish sizing and monitoring using a stereo image analysis system applied to fish farming. Aquac. Eng. 14(2), 155–173 (1995)

Strachan, N.J.C., Nesvadba, P., Allen, A.R.: Fish species recognition by shape analysis of images. Pattern Recognit. 23(5), 539–544 (1990)

Okamoto, M., Morita, S., Sato, T.: Fundamental study to estimate fish biomass around coral reef using 3-dimensional underwater video system. In: Proceedings of the OCEANS 2000 MTS/IEEE Conference and Exhibition, vol. 2, pp. 1389–1392 (2000)

Walther, D., Edgington, D.R., Koch, C.: Detection and tracking of objects in underwater video. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 1, pp. 544–549 (2004)

Rova, A., Mori, G., Dill, L.M.: One fish, two fish, butterfish, trumpeter: recognizing fish in underwater video. In: IAPR Conference on Machine Vision Applications, pp. 404–407 (2007)

Zion, B., Shklyar, A., Karplus, I.: In-vivo fish sorting by computer vision. Aquac. Eng. 22, 165–179 (June 2000)

Heithaus, M.R., Dill, L.M.: Food availability and tiger shark predation risk influence bottlenose dolphin habitat use. Ecology 83(2), 480–491 (2002)

Strachan, N.J.C.: Length measurement of fish by computer vision. Comput. Electron. Agric. 8(2), 93–104 (1993)

Toh, Y.H., Ng, T.M., Liew, B.K.: Automated fish counting using image processing. In: Proceedings of the International Conference on Computational Intelligence and Software Engineering, pp. 1–5 (2009)

Schettini, R., Corchs, S.: Underwater image processing: state of the art of restoration and image enhancement methods. EURASIP J. Adv. Signal Process 2010, 1–7 (Jan. 2010)

Strachan, N.J.C.: Recognition of fish species by colour and shape. Image Vis. Comput. 11, 2–10 (Jan. 1993)

Spampinato, C., Giordano, D., Salvo, R.D., Chen-Burger, Y.H., Fisher, R.B., Nadarajan, G.: Automatic fish classification for underwater species behavior understanding. In: Proceedings of the First ACM International Workshop on Analysis And Retrieval of Tracked Events and Motion in Imagery Streams, pp. 45–50 (2010)

Larsen, R., Ólafsdóttir, H., Ersbøll, B.: Shape and texture based classification of fish species. In: Proceedings of SCIA, pp. 745–749 (2009)

Caley, M.J., Carr, M.H., Hixon, M.A., Hughes, T.P., Jones, G.P., Menge, B.A.: Recruitment and the local dynamics of open marine populations. Annu. Rev. Ecol. Syst. 27, 477–500 (Jan. 1996)

Brehmer, P., Chi, T.D., Mouillot, D.: Amphidromous fish school migration revealed by combining fixed sonar monitoring (horizontal beaming) with fishing data. J. Exp. Mar. Biol. Ecol. 334, 139–150 (June 2006)

Nadarajan, G., Chen-Burger, Y., Fisher, R., Spampinato, C.: A flexible system for automated composition of intelligent video analysis. In: Proceedings of ISPA, pp. 259–264 (2011)

Chih-Chung, C., Chih-Jen, L.: LIBSVM: a library for support vector machines. ACM Trans. Intell. Syst. Technol. 2(3), 1–27 (2011)

Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20, 273–297 (Sept. 1995)

Duan, K.-B., Keerthi, S.S.: Which is the best multiclass SVM method? An empirical study. In: Proceedings of the 6th International Conference on Multiple Classifier Systems (MCS’05), pp. 278–285. Springer, New York (2005)

Carlos, S., Alex, F.: A survey of hierarchical classification across different application domains. Data Min. Knowl. Discov. 22(1–2), 31–72 (2010)

Deng, J., Berg, A., Li, K., Fei-Fei, L.: What does classifying more than 10,000 image categories tell us? ECCV 6315, 71–84 (2010)

Gordon, A.D.: A review of hierarchical classification. J. R. Stat. Soc. 150(2), 119–137 (1987)

Mathis, C.: Classification using a hierarchical bayesian approach. In: Proceedings of ICPR, vol. 4, pp. 103–106 (2002)

Deng, J., Dong, W., Socher, R., Li, L., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: Proceedings of CVPR, pp. 248–255 (2009)

Platt, J.C.: Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods. In: Advances in Large Margin Classifiers, pp. 61–74. MIT Press, USA (1999)

Wang, Y.-C.F., Casasent, D.: A support vector hierarchical method for multi-class classification and rejection. In: Proceedings of the International Joint Conference on Neural Networks (IJCNN’09), pp. 3281–3288 (2009)

Rother, C., Kolmogorov, V., Blake, A.: GrabCut: interactive foreground extraction using iterated graph cuts. ACM Trans. Graph. (SIGGRAPH), 23, 309–314 (2004)

Mokhtarian, F., Suomela, R.: Robust image corner detection through curvature scale space. IEEE Trans. PAMI 20(12), 1376–1381 (1998)

He, X.C., Yung, N.H.C.: Curvature scale space corner detector with adaptive threshold and dynamic region of support. In: Proceedings of the International Conference on Pattern Recognition, vol. 2, pp. 791–794. IEEE Computer Society (2004)

Saeys, Y., Inza, In, Larrañaga, P.: A review of feature selection techniques in bioinformatics. Bioinformatics 23(19), 2507–2517 (2007)

Flusser, J., Zitova, B., Suk, T.: Moments and moment invariants in pattern recognition. Wiley (2009)

Flusser, J., Suk, T., Zitova, B.: Affine moment invariants. In: Moments and Moment Invariants in Pattern Recognition, p. 49C112, Wiley, New York (2009)

Bosch, A., Zisserman, A., Munoz, X.: Representing shape with a spatial pyramid kernel. In: Proceedings of the 6th ACM International Conference on Image and Video Retrieval (CIVR’07), p. 401C408. ACM, New York (2007)

Bishop, C.M.: Neural Networks for Pattern Recognition. Oxford University Press Inc, Oxford (1995)

Mckenna, S.J., Gong, S., Raja, Y.: Modelling facial colour and identity with Gaussian mixtures. Pattern Recognit. 31, 1883–1892 (1998)

Shental, N., Bar-hillel, A., Hertz, T., Weinshall, D.: Computing Gaussian mixture models with EM using equivalence constraints. In: Advances in Neural Information Processing Systems, vol. 16, MIT Press, USA (2003)

Figueiredo, M.A.T., Jain, A.: Unsupervised learning of finite mixture models. IEEE Trans. Pattern Anal. Mach. Intell. 24(3), 381–396 (2002)

Zhao, Y., Karypis, G., Du, D.-Z.: Criterion functions for document clustering. University of Minnesota (2005)

Rissanen, J.: Stochastic complexity and modeling. Ann. Stat. 14, 1080–1100 (1986)

Boom, B., Huang, P., He, J., Fisher, R.: Supporting ground-truth annotation of image datasets using clustering. In: Proceedings of the 21st International Conference on Pattern Recognition (ICPR), pp. 1542–1545 (2012)

Hastie, T., Tibshirani, R., Friedman, J.J.H.: The Elements of Statistical Learning, vol. 1. Springer, New York (2001)

Chib, S.: Marginal likelihood from the Gibbs output. J. Am. Stat. Assoc. 90(432), 1313–1321 (1995)

Huang, P.X., Boom, B.J., Fisher, R.B.: Underwater live fish recognition using a balance-guaranteed optimized tree. In: Computer Vision-ACCV 2012, pp. 422–433 (2013)