Maltose functionalized magnetic core/shell Fe3O4@Au nanoparticles for an efficient l-asparaginase immobilization

International Journal of Biological Macromolecules - Tập 142 - Trang 443-451 - 2020
Tuba Tarhan1,2, Ahmet Ulu3, Melike Sariçam2, Mustafa Çulha2, Burhan Ates3
1Mardin Artuklu University, Vocational High School of Health Services, 47100 Mardin, Turkey
2Department of Genetics and Bioengineering, Yeditepe University, Atasehir, Istanbul 34755, Turkey
3Department of Chemistry, Faculty of Science & Arts, Inonu University, Malatya 44280, Turkey

Tài liệu tham khảo

Liu, 2018, Asparagine synthetase expression is associated with the sensitivity to asparaginase in extranodal natural killer/T-cell lymphoma in vivo and in vitro, Onco. Targets. Ther., 11, 6605, 10.2147/OTT.S155930 Cachumba, 2016, Current applications and different approaches for microbial L-asparaginase production, Brazilian J. Microbiol., 47, 77, 10.1016/j.bjm.2016.10.004 Gustafsson, 2015, Co-immobilization of enzymes with the help of a dendronized polymer and mesoporous silica nanoparticles, J. Mater. Chem. B, 3, 6174, 10.1039/C5TB00543D Ramirez-Paz, 2018, Thiol-maleimide poly(ethylene glycol) crosslinking of L-asparaginase subunits at recombinant cysteine residues introduced by mutagenesis, PLoS One, 13, 10.1371/journal.pone.0197643 Varshosaz, 2018, Enhanced stability of L-asparaginase by its bioconjugation to poly(styrene-co-maleic acid) and Ecoflex nanoparticles, IET Nanobiotechnol., 12, 466, 10.1049/iet-nbt.2017.0156 Agrawal, 2018, Catalytic characteristics and application of l-asparaginase immobilized on aluminum oxide pellets, Int. J. Biol. Macromol., 114, 504, 10.1016/j.ijbiomac.2018.03.081 Agrawal, 2019, Development and catalytic characterization of L-asparaginase nano-bioconjugates, Int. J. Biol. Macromol., 135, 1142, 10.1016/j.ijbiomac.2019.05.154 Ulu, 2016, Design of starch functionalized biodegradable P(MAA-co-MMA) as carrier matrix for L-asparaginase immobilization, Carbohydr. Polym., 153, 559, 10.1016/j.carbpol.2016.08.019 Ulu, 2016, Synthesis and characterization of biodegradable pHEMA-starch composites for immobilization of L-asparaginase, Polym. Bull., 73, 1891, 10.1007/s00289-015-1583-1 Ulu, 2016, Synthesis and characterization of PMMA composites activated with starch for immobilization of L-asparaginase, J. Appl. Polym. Sci., 133, 10.1002/app.43421 Uygun, 2017, Ultrasound-propelled nanowire motors enhance asparaginase enzymatic activity against cancer cells, Nanoscale, 9, 18423, 10.1039/C7NR07396H Ulu, 2018, Magnetic Fe3O4@MCM-41 core–shell nanoparticles functionalized with thiol silane for efficient L-asparaginase immobilization, Artif. Cells, Nanomedicine Biotechnol., 46, 1035, 10.1080/21691401.2018.1478422 Ates, 2018, Magnetic-propelled Fe3O4-chitosan carriers enhance L-asparaginase catalytic activity: a promising strategy for enzyme immobilization, RSC Adv., 8, 36063, 10.1039/C8RA06346J Ulu, 2018, Design of epoxy-functionalized Fe3O4@MCM-41 core–shell nanoparticles for enzyme immobilization, Int. J. Biol. Macromol., 115, 1122, 10.1016/j.ijbiomac.2018.04.157 Ulu, 2018, Chloro-modified magnetic Fe3O4@MCM-41 core–shell nanoparticles for L-asparaginase immobilization with improved catalytic activity, reusability, and storage stability, Appl. Biochem. Biotechnol., 187, 938, 10.1007/s12010-018-2853-9 Lee, 2007, Artificially engineered magnetic nanoparticles for ultra-sensitive molecular imaging, Nat. Med., 13, 95, 10.1038/nm1467 Seo, 2006, FeCo/graphitic-shell nanocrystals as advanced magnetic-resonance-imaging and near-infrared agents, Nat. Mater., 5, 971, 10.1038/nmat1775 Xu, 2007, Magnetic core/shell Fe3O4/Au and Fe3O4/Au/Ag nanoparticles with tunable plasmonic properties, J. Am. Chem. Soc., 129, 8698, 10.1021/ja073057v Wang, 2005, Monodispersed core−shell Fe3O4@Au nanoparticles, J. Phys. Chem. B, 109, 21593, 10.1021/jp0543429 Murray, 2000, Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assemblies, Annu. Rev. Mater. Sci., 30, 545, 10.1146/annurev.matsci.30.1.545 Tartaj, 2003, The preparation of magnetic nanoparticles for applications in biomedicine, J. Phys. D. Appl. Phys., 36, R182, 10.1088/0022-3727/36/13/202 Bonnemain, 1998, Superparamagnetic agents in magnetic resonance imaging: physicochemical characteristics and clinical applications A review, J. Drug Target, 6, 167, 10.3109/10611869808997890 Li, 2003, The removal of carbon monoxide by iron oxide nanoparticles, Appl. Catal. B Environ., 43, 151, 10.1016/S0926-3373(02)00297-7 Cameron, 2003, Gold’s future role in fuel cell systems, J. Power Sources., 118, 298, 10.1016/S0378-7753(03)00074-0 Sun, 2000, Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices, Science, 287, 1989, 10.1126/science.287.5460.1989 Boal, 2002, Monolayer exchange chemistry of γ-Fe2O3 nanoparticles, Chem. Mater., 14, 2628, 10.1021/cm011689p Mikhaylova, 2004, Superparamagnetism of magnetite nanoparticles: dependence on surface modification, Langmuir, 20, 2472, 10.1021/la035648e Woo, 2004, Easy synthesis and magnetic properties of iron oxide nanoparticles, Chem. Mater., 16, 2814, 10.1021/cm049552x Shafi, 2001, Sonochemical synthesis of functionalized amorphous iron oxide nanoparticles, Langmuir, 17, 5093, 10.1021/la010421+ Wilhelm, 2002, Interaction of anionic superparamagnetic nanoparticles with cells: kinetic analyses of membrane adsorption and subsequent internalization, Langmuir, 18, 8148, 10.1021/la0257337 Teng, 2004, Effects of surfactants and synthetic conditions on the sizes and self-assembly of monodisperse iron oxide nanoparticles, J. Mater. Chem., 14, 774, 10.1039/b311610g Wang, 2004, Superparamagnetic Fe2O3 beads−CdSe/ZnS quantum dots core−shell nanocomposite particles for cell separation, Nano Lett., 4, 409, 10.1021/nl035010n Ross, 2001, Patterned magnetic recording media, Annu. Rev. Mater. Res., 31, 203, 10.1146/annurev.matsci.31.1.203 Bi, 2015, Synthesis of a hydrophilic maltose functionalized Au NP/PDA/Fe3O4-RGO magnetic nanocomposite for the highly specific enrichment of glycopeptides, RSC Adv., 5, 59408, 10.1039/C5RA06911D Tural, 2014, Covalent immobilization of benzoylformate decarboxylase from Pseudomonas putida on magnetic epoxy support and its carboligation reactivity, J. Mol. Catal. B Enzym., 102, 188, 10.1016/j.molcatb.2014.02.016 Gu, 2006, Biofunctional magnetic nanoparticles for protein separation and pathogen detection, Chem. Commun., 7, 941, 10.1039/b514130c Johnson, 2008, Novel method for immobilization of enzymes to magnetic nanoparticles, J. Nanoparticle Res., 10, 1009, 10.1007/s11051-007-9332-5 Chatterjee, 2014, Core/shell nanoparticles in biomedical applications, Adv. Colloid. Interfac., 209, 8, 10.1016/j.cis.2013.12.008 Wang, 2008, Core@shell nanomaterials: gold-coated magnetic oxide nanoparticles, J. Mater. Chem., 18, 2629, 10.1039/b719096d Wang, 2010, Surface plasmon resonance biosensor based on Fe3O4/Au nanocomposites, Colloid. Surface. B, 81, 600, 10.1016/j.colsurfb.2010.08.007 Park, 2004, Ultra-large-scale syntheses of monodisperse nanocrystals, Nat. Mater., 3, 891, 10.1038/nmat1251 Bernardes, 2006, The direct formation of glycosyl thiols from reducing sugars allows one-pot protein glycoconjugation, Angew. Chemie Int. Ed., 45, 4007, 10.1002/anie.200600685 Bradford, 1976, A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding, Anal. Biochem., 72, 248, 10.1016/0003-2697(76)90527-3 Wriston, 1973, L-asparaginase: a review, Adv. Enzymol. Relat. Areas Mol. Biol., 39, 185 Lastovina, 2017, Microwave-assisted synthesis of magnetic iron oxide nanoparticles in oleylamine–oleic acid solutions, Mendeleev Commun., 27, 487, 10.1016/j.mencom.2017.09.019 Bu, 2009, Oleic acid/oleylamine cooperative-controlled crystallization mechanism for monodisperse tetragonal bipyramid NaLa(MoO4)2 nanocrystals, J. Phys. Chem. C, 113, 12176, 10.1021/jp901437a Rajamathi, 2002, Hydrolysis and amine-capping in a glycol solvent as a route to soluble maghemite γ-Fe2O3 nanoparticles, Chem. Commun., 1152–1153 Sun, 2004, Monodisperse MFe2O4 (M = Fe Co, Mn) nanoparticles, J. Am. Chem. Soc., 126, 273, 10.1021/ja0380852 Liu, 2014, Multi-branched CdSe nanocrystals stabilized by weak ligand for hybrid solar cell application, J. Nanosci. Nanotechnol., 14, 2836, 10.1166/jnn.2014.8612 Tang, 2011, Recent developments of hybrid nanocrystal/polymer bulk heterojunction solar cells, J. Nanosci. Nanotechnol., 11, 9384, 10.1166/jnn.2011.5311 Wu, 2011, Synthesis and reaction temperature-tailored self-assembly of copper sulfide nanoplates, Nanoscale, 3, 5096, 10.1039/c1nr10829h Abdulla-Al-Mamun, 2013, Au-ultrathin functionalized core–shell (Fe3O4@Au) monodispersed nanocubes for a combination of magnetic/plasmonic photothermal cancer cell killing, RSC Adv., 3, 7816, 10.1039/c3ra21479f Wang, 2005, Iron oxide–gold core–shell nanoparticles and thin film assembly, J. Mater. Chem., 15, 1821, 10.1039/b501375e Xia, 2016, Fabrication of Fe3O4@Au hollow spheres with recyclable and efficient catalytic properties, New J. Chem., 40, 818, 10.1039/C5NJ02436F Alam, 2018, Asparaginase conjugated magnetic nanoparticles used for reducing acrylamide formation in food model system, Bioresour. Technol., 269, 121, 10.1016/j.biortech.2018.08.095 Ghosh, 2012, Polyaniline nanofiber as a novel immobilization matrix for the anti-leukemia enzyme l-asparaginase, J. Mol. Catal. B Enzym., 74, 132, 10.1016/j.molcatb.2011.09.009 Torabizadeh, 2018, Inulin hydrolysis by inulinase immobilized covalently on magnetic nanoparticles prepared with wheat gluten hydrolysates, Biotechnol. Reports, 17, 97, 10.1016/j.btre.2018.02.004 Monajati, 2018, Immobilization of L-asparaginase on aspartic acid functionalized graphene oxide nanosheet: enzyme kinetics and stability studies, Chem. Eng. J., 354, 1153, 10.1016/j.cej.2018.08.058 Li, 2016, Laccase immobilized on PAN/O-MMT composite nanofibers support for substrate bioremediation: a de novo adsorption and biocatalytic synergy, RSC Adv., 6, 41420, 10.1039/C6RA00220J