Maltose functionalized magnetic core/shell Fe3O4@Au nanoparticles for an efficient l-asparaginase immobilization
Tài liệu tham khảo
Liu, 2018, Asparagine synthetase expression is associated with the sensitivity to asparaginase in extranodal natural killer/T-cell lymphoma in vivo and in vitro, Onco. Targets. Ther., 11, 6605, 10.2147/OTT.S155930
Cachumba, 2016, Current applications and different approaches for microbial L-asparaginase production, Brazilian J. Microbiol., 47, 77, 10.1016/j.bjm.2016.10.004
Gustafsson, 2015, Co-immobilization of enzymes with the help of a dendronized polymer and mesoporous silica nanoparticles, J. Mater. Chem. B, 3, 6174, 10.1039/C5TB00543D
Ramirez-Paz, 2018, Thiol-maleimide poly(ethylene glycol) crosslinking of L-asparaginase subunits at recombinant cysteine residues introduced by mutagenesis, PLoS One, 13, 10.1371/journal.pone.0197643
Varshosaz, 2018, Enhanced stability of L-asparaginase by its bioconjugation to poly(styrene-co-maleic acid) and Ecoflex nanoparticles, IET Nanobiotechnol., 12, 466, 10.1049/iet-nbt.2017.0156
Agrawal, 2018, Catalytic characteristics and application of l-asparaginase immobilized on aluminum oxide pellets, Int. J. Biol. Macromol., 114, 504, 10.1016/j.ijbiomac.2018.03.081
Agrawal, 2019, Development and catalytic characterization of L-asparaginase nano-bioconjugates, Int. J. Biol. Macromol., 135, 1142, 10.1016/j.ijbiomac.2019.05.154
Ulu, 2016, Design of starch functionalized biodegradable P(MAA-co-MMA) as carrier matrix for L-asparaginase immobilization, Carbohydr. Polym., 153, 559, 10.1016/j.carbpol.2016.08.019
Ulu, 2016, Synthesis and characterization of biodegradable pHEMA-starch composites for immobilization of L-asparaginase, Polym. Bull., 73, 1891, 10.1007/s00289-015-1583-1
Ulu, 2016, Synthesis and characterization of PMMA composites activated with starch for immobilization of L-asparaginase, J. Appl. Polym. Sci., 133, 10.1002/app.43421
Uygun, 2017, Ultrasound-propelled nanowire motors enhance asparaginase enzymatic activity against cancer cells, Nanoscale, 9, 18423, 10.1039/C7NR07396H
Ulu, 2018, Magnetic Fe3O4@MCM-41 core–shell nanoparticles functionalized with thiol silane for efficient L-asparaginase immobilization, Artif. Cells, Nanomedicine Biotechnol., 46, 1035, 10.1080/21691401.2018.1478422
Ates, 2018, Magnetic-propelled Fe3O4-chitosan carriers enhance L-asparaginase catalytic activity: a promising strategy for enzyme immobilization, RSC Adv., 8, 36063, 10.1039/C8RA06346J
Ulu, 2018, Design of epoxy-functionalized Fe3O4@MCM-41 core–shell nanoparticles for enzyme immobilization, Int. J. Biol. Macromol., 115, 1122, 10.1016/j.ijbiomac.2018.04.157
Ulu, 2018, Chloro-modified magnetic Fe3O4@MCM-41 core–shell nanoparticles for L-asparaginase immobilization with improved catalytic activity, reusability, and storage stability, Appl. Biochem. Biotechnol., 187, 938, 10.1007/s12010-018-2853-9
Lee, 2007, Artificially engineered magnetic nanoparticles for ultra-sensitive molecular imaging, Nat. Med., 13, 95, 10.1038/nm1467
Seo, 2006, FeCo/graphitic-shell nanocrystals as advanced magnetic-resonance-imaging and near-infrared agents, Nat. Mater., 5, 971, 10.1038/nmat1775
Xu, 2007, Magnetic core/shell Fe3O4/Au and Fe3O4/Au/Ag nanoparticles with tunable plasmonic properties, J. Am. Chem. Soc., 129, 8698, 10.1021/ja073057v
Wang, 2005, Monodispersed core−shell Fe3O4@Au nanoparticles, J. Phys. Chem. B, 109, 21593, 10.1021/jp0543429
Murray, 2000, Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assemblies, Annu. Rev. Mater. Sci., 30, 545, 10.1146/annurev.matsci.30.1.545
Tartaj, 2003, The preparation of magnetic nanoparticles for applications in biomedicine, J. Phys. D. Appl. Phys., 36, R182, 10.1088/0022-3727/36/13/202
Bonnemain, 1998, Superparamagnetic agents in magnetic resonance imaging: physicochemical characteristics and clinical applications A review, J. Drug Target, 6, 167, 10.3109/10611869808997890
Li, 2003, The removal of carbon monoxide by iron oxide nanoparticles, Appl. Catal. B Environ., 43, 151, 10.1016/S0926-3373(02)00297-7
Cameron, 2003, Gold’s future role in fuel cell systems, J. Power Sources., 118, 298, 10.1016/S0378-7753(03)00074-0
Sun, 2000, Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices, Science, 287, 1989, 10.1126/science.287.5460.1989
Boal, 2002, Monolayer exchange chemistry of γ-Fe2O3 nanoparticles, Chem. Mater., 14, 2628, 10.1021/cm011689p
Mikhaylova, 2004, Superparamagnetism of magnetite nanoparticles: dependence on surface modification, Langmuir, 20, 2472, 10.1021/la035648e
Woo, 2004, Easy synthesis and magnetic properties of iron oxide nanoparticles, Chem. Mater., 16, 2814, 10.1021/cm049552x
Shafi, 2001, Sonochemical synthesis of functionalized amorphous iron oxide nanoparticles, Langmuir, 17, 5093, 10.1021/la010421+
Wilhelm, 2002, Interaction of anionic superparamagnetic nanoparticles with cells: kinetic analyses of membrane adsorption and subsequent internalization, Langmuir, 18, 8148, 10.1021/la0257337
Teng, 2004, Effects of surfactants and synthetic conditions on the sizes and self-assembly of monodisperse iron oxide nanoparticles, J. Mater. Chem., 14, 774, 10.1039/b311610g
Wang, 2004, Superparamagnetic Fe2O3 beads−CdSe/ZnS quantum dots core−shell nanocomposite particles for cell separation, Nano Lett., 4, 409, 10.1021/nl035010n
Ross, 2001, Patterned magnetic recording media, Annu. Rev. Mater. Res., 31, 203, 10.1146/annurev.matsci.31.1.203
Bi, 2015, Synthesis of a hydrophilic maltose functionalized Au NP/PDA/Fe3O4-RGO magnetic nanocomposite for the highly specific enrichment of glycopeptides, RSC Adv., 5, 59408, 10.1039/C5RA06911D
Tural, 2014, Covalent immobilization of benzoylformate decarboxylase from Pseudomonas putida on magnetic epoxy support and its carboligation reactivity, J. Mol. Catal. B Enzym., 102, 188, 10.1016/j.molcatb.2014.02.016
Gu, 2006, Biofunctional magnetic nanoparticles for protein separation and pathogen detection, Chem. Commun., 7, 941, 10.1039/b514130c
Johnson, 2008, Novel method for immobilization of enzymes to magnetic nanoparticles, J. Nanoparticle Res., 10, 1009, 10.1007/s11051-007-9332-5
Chatterjee, 2014, Core/shell nanoparticles in biomedical applications, Adv. Colloid. Interfac., 209, 8, 10.1016/j.cis.2013.12.008
Wang, 2008, Core@shell nanomaterials: gold-coated magnetic oxide nanoparticles, J. Mater. Chem., 18, 2629, 10.1039/b719096d
Wang, 2010, Surface plasmon resonance biosensor based on Fe3O4/Au nanocomposites, Colloid. Surface. B, 81, 600, 10.1016/j.colsurfb.2010.08.007
Park, 2004, Ultra-large-scale syntheses of monodisperse nanocrystals, Nat. Mater., 3, 891, 10.1038/nmat1251
Bernardes, 2006, The direct formation of glycosyl thiols from reducing sugars allows one-pot protein glycoconjugation, Angew. Chemie Int. Ed., 45, 4007, 10.1002/anie.200600685
Bradford, 1976, A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding, Anal. Biochem., 72, 248, 10.1016/0003-2697(76)90527-3
Wriston, 1973, L-asparaginase: a review, Adv. Enzymol. Relat. Areas Mol. Biol., 39, 185
Lastovina, 2017, Microwave-assisted synthesis of magnetic iron oxide nanoparticles in oleylamine–oleic acid solutions, Mendeleev Commun., 27, 487, 10.1016/j.mencom.2017.09.019
Bu, 2009, Oleic acid/oleylamine cooperative-controlled crystallization mechanism for monodisperse tetragonal bipyramid NaLa(MoO4)2 nanocrystals, J. Phys. Chem. C, 113, 12176, 10.1021/jp901437a
Rajamathi, 2002, Hydrolysis and amine-capping in a glycol solvent as a route to soluble maghemite γ-Fe2O3 nanoparticles, Chem. Commun., 1152–1153
Sun, 2004, Monodisperse MFe2O4 (M = Fe Co, Mn) nanoparticles, J. Am. Chem. Soc., 126, 273, 10.1021/ja0380852
Liu, 2014, Multi-branched CdSe nanocrystals stabilized by weak ligand for hybrid solar cell application, J. Nanosci. Nanotechnol., 14, 2836, 10.1166/jnn.2014.8612
Tang, 2011, Recent developments of hybrid nanocrystal/polymer bulk heterojunction solar cells, J. Nanosci. Nanotechnol., 11, 9384, 10.1166/jnn.2011.5311
Wu, 2011, Synthesis and reaction temperature-tailored self-assembly of copper sulfide nanoplates, Nanoscale, 3, 5096, 10.1039/c1nr10829h
Abdulla-Al-Mamun, 2013, Au-ultrathin functionalized core–shell (Fe3O4@Au) monodispersed nanocubes for a combination of magnetic/plasmonic photothermal cancer cell killing, RSC Adv., 3, 7816, 10.1039/c3ra21479f
Wang, 2005, Iron oxide–gold core–shell nanoparticles and thin film assembly, J. Mater. Chem., 15, 1821, 10.1039/b501375e
Xia, 2016, Fabrication of Fe3O4@Au hollow spheres with recyclable and efficient catalytic properties, New J. Chem., 40, 818, 10.1039/C5NJ02436F
Alam, 2018, Asparaginase conjugated magnetic nanoparticles used for reducing acrylamide formation in food model system, Bioresour. Technol., 269, 121, 10.1016/j.biortech.2018.08.095
Ghosh, 2012, Polyaniline nanofiber as a novel immobilization matrix for the anti-leukemia enzyme l-asparaginase, J. Mol. Catal. B Enzym., 74, 132, 10.1016/j.molcatb.2011.09.009
Torabizadeh, 2018, Inulin hydrolysis by inulinase immobilized covalently on magnetic nanoparticles prepared with wheat gluten hydrolysates, Biotechnol. Reports, 17, 97, 10.1016/j.btre.2018.02.004
Monajati, 2018, Immobilization of L-asparaginase on aspartic acid functionalized graphene oxide nanosheet: enzyme kinetics and stability studies, Chem. Eng. J., 354, 1153, 10.1016/j.cej.2018.08.058
Li, 2016, Laccase immobilized on PAN/O-MMT composite nanofibers support for substrate bioremediation: a de novo adsorption and biocatalytic synergy, RSC Adv., 6, 41420, 10.1039/C6RA00220J