Biosorption properties of pretreated sporopollenin biomass for lead(II) and copper(II): Application of response surface methodology
Tài liệu tham khảo
Ali, 2013, Phytoremediation of heavy metals—concepts and applications, Chemosphere, 91, 869, 10.1016/j.chemosphere.2013.01.075
Box, 2007
Çimen, 2013, Adsorptive removal of Co(II), Ni(II), and Cu(II) ions from aqueous media using chemically modified sporopollenin of Lycopodium clavatum as novel biosorbent, Desalin. Water Treat., 1
Ersoz, 1995, Ion exchange equilibria of heavy metals in aqueous solution on new chelating resins of sporopollenin, React. Polym., 24, 195, 10.1016/0923-1137(94)00084-I
Fraser, 2012, Evolutionary stasis of sporopollenin biochemistry revealed by unaltered Pennsylvanian spores, New Phytol., 196, 397, 10.1111/j.1469-8137.2012.04301.x
Freundlich, 1906, Over the adsorption in solution, Z. Phys. Chem., 57, 385
Fu, 2011, Removal of heavy metal ions from wastewaters: a review, J. Environ. Manage., 92, 407, 10.1016/j.jenvman.2010.11.011
Gode, 2007, Sorption of Cr(III) onto chelating b-DAEG–sporopollenin and CEP–sporopollenin resins, Bioresour. Technol., 98, 904, 10.1016/j.biortech.2006.02.043
Gomez-Serrano, 1998, Adsorption of mercury, cadmium and lead from aqueous solution on heat-treated and sulphurized activated carbon, Water Res., 32, 1, 10.1016/S0043-1354(97)00203-0
Gorgievski, 2013, Kinetics, equilibrium and mechanism of Cu2+, Ni2+ and Zn2+ ions biosorption using wheat straw, Ecol. Eng., 58, 113, 10.1016/j.ecoleng.2013.06.025
Gubbuk, 2012, Surface modification of sporopollenin with calixarene derivative, Water Air Soil Pollut., 223, 2623, 10.1007/s11270-011-1054-8
Gubbuk, 2011, Isotherms and thermodynamics for the sorption of heavy metal ions onto functionalized sporopollenin, J. Hazard. Mater., 186, 416, 10.1016/j.jhazmat.2010.11.010
Hashim, 2011, Remediation technologies for heavy metal contaminated groundwater, J. Environ. Manage., 92, 2355, 10.1016/j.jenvman.2011.06.009
Ho, 2002, Equilibrium isotherm studies for the sorption of divalent metal ions onto peat: copper, nickel and lead single component systems, Water Air Soil Pollut., 141, 1, 10.1023/A:1021304828010
Kayan, 2012, Degradation of acid Red 274 using H2O2 in subcritical water: application of response surface methodology, J. Hazard. Mater., 201/202, 100, 10.1016/j.jhazmat.2011.11.045
Khajeh, 2011, Response surface modelling of lead pre-concentration from food samples by miniaturised homogenous liquid–liquid solvent extraction. Box–Behnken design, Food Chem., 129, 1832, 10.1016/j.foodchem.2011.05.123
Langmuir, 1916, The constitution and fundamental properties of solids and liquids. Part I. Solids, J. Am. Chem. Soc., 38, 2221, 10.1021/ja02268a002
Lesage, 2007, Sorption of Co, Cu, Ni and Zn from industrial effluents by the submerged aquatic macrophyte Myriophyllum spicatum L., Ecol. Eng., 30, 320, 10.1016/j.ecoleng.2007.04.007
Liang, 2011, Lead and copper removal from aqueous solutions by porous glass derived calcium hydroxyapatite, Mater. Sci. Eng. B, 176, 1010, 10.1016/j.mseb.2011.05.036
Liu, 2013, Adsorption of Cu(II) ions from aqueous solutions on modified chrysotile: thermodynamic and kinetic studies, Appl. Clay Sci., 80/81, 38, 10.1016/j.clay.2013.05.014
Mehta, 2001, Characterization and optimization of Ni and Cu sorption from aqueous solution by Chlorella vulgaris, Ecol. Eng., 18, 1, 10.1016/S0925-8574(00)00174-9
Moghaddam, 2010, Coagulation/flocculation process for dye removal using sludge from water treatment plant: optimization through response surface methodology, J. Hazard. Mater., 175, 651, 10.1016/j.jhazmat.2009.10.058
Mona, 2011, Biosorption of reactive dye by waste biomass of Nostoc linckia, Ecol. Eng., 37, 1589, 10.1016/j.ecoleng.2011.04.005
Milenkovic, 2009, Ultrasound-assisted adsoption of copper (II) ions on hazelnut shell activated carbon, Ultrason. Sonochem., 16, 557, 10.1016/j.ultsonch.2008.12.002
O’Connell, 2008, Heavy metal adsorbents prepared from the modification of cellulose: a review, Bioresour. Technol., 99, 6709, 10.1016/j.biortech.2008.01.036
Özer, 2008, Investigation of nickel(II) biosorption on Enteromorpha prolifera: optimization using response surface analysis, J. Hazard. Mater., 152, 778, 10.1016/j.jhazmat.2007.07.088
Razmovski, 2008, Biosorption of Cr (IV) and Cu (II) by waste tea fungal biomass, Ecol. Eng., 34, 179, 10.1016/j.ecoleng.2008.07.020
Reddy, 2013, Synthesis and characterization of a chitosan ligand for the removal of copper from aqueous media, J. Appl. Polym. Sci., 130, 4542
Reddy, 2013, Application of magnetic chitosan composites for the removal of toxic metal and dyes from aqueous solutions, Adv. Colloid Interf. Sci., 201/202, 68, 10.1016/j.cis.2013.10.002
Reddy, 2013, Three-dimensional porous spinel ferrite as an adsorbent for Pb(II) removal from aqueous solutions, Indust. Eng. Chem. Res., 52, 15789, 10.1021/ie303359e
Reddy, 2012, Biosorption of toxic heavy metal ions from water environment using honeycomb biomass-an industrial waste material, Water Air Soil Pollut., 223, 5967, 10.1007/s11270-012-1332-0
Reddy, 2012, Optimization of Cd(II), Cu(II) and Ni(II) biosorption by chemically modified Moringa oleifera leaves powder, Carbohydr. Polym., 88, 1077, 10.1016/j.carbpol.2012.01.073
Reddy, 2010, Biosorption of Pb2+ from aqueous solutions by Moringa oleifera bark: equilibrium and kinetic studies, J. Hazard. Mater., 174, 831, 10.1016/j.jhazmat.2009.09.128
Rivera-Utrilla, 2001, Activated carbon surface modifications by adsorption of bacteria and their effect on aqueous lead adsorption, J. Chem. Technol. Biotechnol., 76, 1209, 10.1002/jctb.506
Sarkar, 2011, Application of response surface methodology for optimization of heavy metal biosorption using surfactant modified chitosan bead, Chem. Eng. J., 175, 376, 10.1016/j.cej.2011.09.125
Schneider, 2001, Biosorption of metals onto plant biomass: exchange adsorption or surface precipitation?, Int. J. Miner. Process, 62, 111, 10.1016/S0301-7516(00)00047-8
Singh, 2010, Biosorption optimization of lead (II), cadmium (II) and copper(II) using response surface methodology and applicability in isotherms and thermodynamics modeling, J. Hazard. Mater., 174, 623, 10.1016/j.jhazmat.2009.09.097
Singh, 2012, Effective removal of Cu2+ ions from aqueous medium using alginate as biosorbent, Ecol. Eng., 38, 119, 10.1016/j.ecoleng.2011.10.007
Sips, 1948, On the structure of a catalyst surface, J. Chem. Phys., 16, 490, 10.1063/1.1746922
Ünlü, 2006, Adsorption characteristics of heavy metal ions onto a low cost biopolymeric sorbent from aqueous solutions, J. Hazard. Mater., 136, 272, 10.1016/j.jhazmat.2005.12.013
Wang, 2009, Biosorbents for heavy metals removal and their future, Biotechnol. Adv., 27, 195, 10.1016/j.biotechadv.2008.11.002
Wang, 2013, Conserved metabolic steps for sporopollenin precursor formation in tobacco and rice, Physiol. Plant., 149, 13, 10.1111/ppl.12018
WHO, 2011
Witek-Krowiak, 2013, Removal of microelemental Cr(III) and Cu(II) by using soybean meal waste—unusual isotherms and insights of binding mechanism, Bioresour. Technol., 127, 350, 10.1016/j.biortech.2012.09.072
Yetilmezsoy, 2009, Response surface modelling of Pb(II) removal from aqueous solution by Pistacia vera L.: Box–Behnken experimental design, J. Hazard. Mater., 171, 551, 10.1016/j.jhazmat.2009.06.035
Zayed, 2013, Potential use of novel modified fishbone for anchoring hazardous metal ions from their solutions, Ecol. Eng., 61, 390, 10.1016/j.ecoleng.2013.09.010
Zhang, 2009, Optimization for decolorization of azo dye acid green 20 by ultrasound and H2O2 using response surface methodology, J. Hazard. Mater., 172, 1388, 10.1016/j.jhazmat.2009.07.146