Biosorption properties of pretreated sporopollenin biomass for lead(II) and copper(II): Application of response surface methodology

Ecological Engineering - Tập 68 - Trang 200-208 - 2014
Murat Şener1, D. Harikishore Kumar Reddy2, Berkant Kayan1
1Department of Chemistry, Arts and Science Faculty, Aksaray University, Aksaray, Turkey
2Department of Environmental Engineering, Kwandong University, Gangneung-si 210 701, South Korea

Tài liệu tham khảo

Ali, 2013, Phytoremediation of heavy metals—concepts and applications, Chemosphere, 91, 869, 10.1016/j.chemosphere.2013.01.075 Box, 2007 Çimen, 2013, Adsorptive removal of Co(II), Ni(II), and Cu(II) ions from aqueous media using chemically modified sporopollenin of Lycopodium clavatum as novel biosorbent, Desalin. Water Treat., 1 Ersoz, 1995, Ion exchange equilibria of heavy metals in aqueous solution on new chelating resins of sporopollenin, React. Polym., 24, 195, 10.1016/0923-1137(94)00084-I Fraser, 2012, Evolutionary stasis of sporopollenin biochemistry revealed by unaltered Pennsylvanian spores, New Phytol., 196, 397, 10.1111/j.1469-8137.2012.04301.x Freundlich, 1906, Over the adsorption in solution, Z. Phys. Chem., 57, 385 Fu, 2011, Removal of heavy metal ions from wastewaters: a review, J. Environ. Manage., 92, 407, 10.1016/j.jenvman.2010.11.011 Gode, 2007, Sorption of Cr(III) onto chelating b-DAEG–sporopollenin and CEP–sporopollenin resins, Bioresour. Technol., 98, 904, 10.1016/j.biortech.2006.02.043 Gomez-Serrano, 1998, Adsorption of mercury, cadmium and lead from aqueous solution on heat-treated and sulphurized activated carbon, Water Res., 32, 1, 10.1016/S0043-1354(97)00203-0 Gorgievski, 2013, Kinetics, equilibrium and mechanism of Cu2+, Ni2+ and Zn2+ ions biosorption using wheat straw, Ecol. Eng., 58, 113, 10.1016/j.ecoleng.2013.06.025 Gubbuk, 2012, Surface modification of sporopollenin with calixarene derivative, Water Air Soil Pollut., 223, 2623, 10.1007/s11270-011-1054-8 Gubbuk, 2011, Isotherms and thermodynamics for the sorption of heavy metal ions onto functionalized sporopollenin, J. Hazard. Mater., 186, 416, 10.1016/j.jhazmat.2010.11.010 Hashim, 2011, Remediation technologies for heavy metal contaminated groundwater, J. Environ. Manage., 92, 2355, 10.1016/j.jenvman.2011.06.009 Ho, 2002, Equilibrium isotherm studies for the sorption of divalent metal ions onto peat: copper, nickel and lead single component systems, Water Air Soil Pollut., 141, 1, 10.1023/A:1021304828010 Kayan, 2012, Degradation of acid Red 274 using H2O2 in subcritical water: application of response surface methodology, J. Hazard. Mater., 201/202, 100, 10.1016/j.jhazmat.2011.11.045 Khajeh, 2011, Response surface modelling of lead pre-concentration from food samples by miniaturised homogenous liquid–liquid solvent extraction. Box–Behnken design, Food Chem., 129, 1832, 10.1016/j.foodchem.2011.05.123 Langmuir, 1916, The constitution and fundamental properties of solids and liquids. Part I. Solids, J. Am. Chem. Soc., 38, 2221, 10.1021/ja02268a002 Lesage, 2007, Sorption of Co, Cu, Ni and Zn from industrial effluents by the submerged aquatic macrophyte Myriophyllum spicatum L., Ecol. Eng., 30, 320, 10.1016/j.ecoleng.2007.04.007 Liang, 2011, Lead and copper removal from aqueous solutions by porous glass derived calcium hydroxyapatite, Mater. Sci. Eng. B, 176, 1010, 10.1016/j.mseb.2011.05.036 Liu, 2013, Adsorption of Cu(II) ions from aqueous solutions on modified chrysotile: thermodynamic and kinetic studies, Appl. Clay Sci., 80/81, 38, 10.1016/j.clay.2013.05.014 Mehta, 2001, Characterization and optimization of Ni and Cu sorption from aqueous solution by Chlorella vulgaris, Ecol. Eng., 18, 1, 10.1016/S0925-8574(00)00174-9 Moghaddam, 2010, Coagulation/flocculation process for dye removal using sludge from water treatment plant: optimization through response surface methodology, J. Hazard. Mater., 175, 651, 10.1016/j.jhazmat.2009.10.058 Mona, 2011, Biosorption of reactive dye by waste biomass of Nostoc linckia, Ecol. Eng., 37, 1589, 10.1016/j.ecoleng.2011.04.005 Milenkovic, 2009, Ultrasound-assisted adsoption of copper (II) ions on hazelnut shell activated carbon, Ultrason. Sonochem., 16, 557, 10.1016/j.ultsonch.2008.12.002 O’Connell, 2008, Heavy metal adsorbents prepared from the modification of cellulose: a review, Bioresour. Technol., 99, 6709, 10.1016/j.biortech.2008.01.036 Özer, 2008, Investigation of nickel(II) biosorption on Enteromorpha prolifera: optimization using response surface analysis, J. Hazard. Mater., 152, 778, 10.1016/j.jhazmat.2007.07.088 Razmovski, 2008, Biosorption of Cr (IV) and Cu (II) by waste tea fungal biomass, Ecol. Eng., 34, 179, 10.1016/j.ecoleng.2008.07.020 Reddy, 2013, Synthesis and characterization of a chitosan ligand for the removal of copper from aqueous media, J. Appl. Polym. Sci., 130, 4542 Reddy, 2013, Application of magnetic chitosan composites for the removal of toxic metal and dyes from aqueous solutions, Adv. Colloid Interf. Sci., 201/202, 68, 10.1016/j.cis.2013.10.002 Reddy, 2013, Three-dimensional porous spinel ferrite as an adsorbent for Pb(II) removal from aqueous solutions, Indust. Eng. Chem. Res., 52, 15789, 10.1021/ie303359e Reddy, 2012, Biosorption of toxic heavy metal ions from water environment using honeycomb biomass-an industrial waste material, Water Air Soil Pollut., 223, 5967, 10.1007/s11270-012-1332-0 Reddy, 2012, Optimization of Cd(II), Cu(II) and Ni(II) biosorption by chemically modified Moringa oleifera leaves powder, Carbohydr. Polym., 88, 1077, 10.1016/j.carbpol.2012.01.073 Reddy, 2010, Biosorption of Pb2+ from aqueous solutions by Moringa oleifera bark: equilibrium and kinetic studies, J. Hazard. Mater., 174, 831, 10.1016/j.jhazmat.2009.09.128 Rivera-Utrilla, 2001, Activated carbon surface modifications by adsorption of bacteria and their effect on aqueous lead adsorption, J. Chem. Technol. Biotechnol., 76, 1209, 10.1002/jctb.506 Sarkar, 2011, Application of response surface methodology for optimization of heavy metal biosorption using surfactant modified chitosan bead, Chem. Eng. J., 175, 376, 10.1016/j.cej.2011.09.125 Schneider, 2001, Biosorption of metals onto plant biomass: exchange adsorption or surface precipitation?, Int. J. Miner. Process, 62, 111, 10.1016/S0301-7516(00)00047-8 Singh, 2010, Biosorption optimization of lead (II), cadmium (II) and copper(II) using response surface methodology and applicability in isotherms and thermodynamics modeling, J. Hazard. Mater., 174, 623, 10.1016/j.jhazmat.2009.09.097 Singh, 2012, Effective removal of Cu2+ ions from aqueous medium using alginate as biosorbent, Ecol. Eng., 38, 119, 10.1016/j.ecoleng.2011.10.007 Sips, 1948, On the structure of a catalyst surface, J. Chem. Phys., 16, 490, 10.1063/1.1746922 Ünlü, 2006, Adsorption characteristics of heavy metal ions onto a low cost biopolymeric sorbent from aqueous solutions, J. Hazard. Mater., 136, 272, 10.1016/j.jhazmat.2005.12.013 Wang, 2009, Biosorbents for heavy metals removal and their future, Biotechnol. Adv., 27, 195, 10.1016/j.biotechadv.2008.11.002 Wang, 2013, Conserved metabolic steps for sporopollenin precursor formation in tobacco and rice, Physiol. Plant., 149, 13, 10.1111/ppl.12018 WHO, 2011 Witek-Krowiak, 2013, Removal of microelemental Cr(III) and Cu(II) by using soybean meal waste—unusual isotherms and insights of binding mechanism, Bioresour. Technol., 127, 350, 10.1016/j.biortech.2012.09.072 Yetilmezsoy, 2009, Response surface modelling of Pb(II) removal from aqueous solution by Pistacia vera L.: Box–Behnken experimental design, J. Hazard. Mater., 171, 551, 10.1016/j.jhazmat.2009.06.035 Zayed, 2013, Potential use of novel modified fishbone for anchoring hazardous metal ions from their solutions, Ecol. Eng., 61, 390, 10.1016/j.ecoleng.2013.09.010 Zhang, 2009, Optimization for decolorization of azo dye acid green 20 by ultrasound and H2O2 using response surface methodology, J. Hazard. Mater., 172, 1388, 10.1016/j.jhazmat.2009.07.146