Population structure and ontogenetic habitat use of Micropogonias furnieri in the Southwestern Atlantic Ocean inferred by otolith chemistry

Fisheries Research - Tập 240 - Trang 105953 - 2021
Esteban Avigliano1, Nadia M. Alves2,3, M. Rita Rico3, Claudio O. Ruarte3, Luciana D’Atri3, Ana Méndez4, Jorge Pisonero4, Alejandra V. Volpedo1,5, Claudia Borstelmann3
1CONICET-Universidad de Buenos Aires, Instituto de Investigaciones en Producción Animal (INPA, Facultad de Ciencias Veterinarias, Universidad de Buenos Aires (UBA), Av. Chorroarín 280 (C1427CWO), Ciudad Autónoma de Buenos Aires, Argentina
2Instituto de Investigaciones Marinas y Costeras (IIMyC), UNMdP-CONICET, Mar del Plata, Argentina
3Instituto Nacional de Investigación y Desarrollo Pesquero (INIDEP), Paseo V. Ocampo N°1, B7602HSA Mar del Plata, Argentina
4Departamento de Física, Facultad de Ciencias, Universidad de Oviedo, Federico García Lorca Nº 18, 33007, Oviedo, Spain
5Universidad de Buenos Aires, Centro de Estudios Transdisciplinarios del Agua (CETA), Facultad de Ciencias Veterinarias, Universidad de Buenos Aires (UBA), Argentina

Tài liệu tham khảo

Acha, 1999, Estuarine spawning of the whitemouth croaker Micropogonias furnieri (Pisces: Sciaenidae), in the Rio de la Plata, Argentina, Mar. Freshw. Res., 10.1071/MF98045 Albuquerque, 2010, Whitemouth croaker, Micropogonias furnieri, trapped in a freshwater coastal lagoon: a natural comparison of freshwater and marine influences on otolith chemistry, Neotrop. Ichthyol., 8, 311, 10.1590/S1679-62252010000200009 Albuquerque, 2012, Estuarine dependency in a marine fish evaluated with otolith chemistry, Mar. Biol., 159, 2229, 10.1007/s00227-012-2007-5 Anderson, 2006, Multivariate dispersion as a measure of beta diversity, Ecol. Lett., 9, 683, 10.1111/j.1461-0248.2006.00926.x Avigliano, 2013, Use of otolith strontium:calcium ratio as an indicator of seasonal displacements of the silverside (Odontesthes bonariensis) in a freshwater-marine environment, Mar. Freshw. Res., 64, 746, 10.1071/MF12165 Avigliano, 2019, Fin spines chemistry as a non-lethal alternative to otoliths for habitat and stock discrimination: comparison between structures for an endangered catfish species, Mar. Ecol. Prog. Ser., 614, 147, 10.3354/meps12895 Avigliano, 2020, Otoliths as indicators for fish behaviour and procurement strategies of hunter-gatherers in North Patagonia, Heliyon, 6, 10.1016/j.heliyon.2020.e03438 Avigliano, 2020, White mullet Mugil curema population structure from Mexico and Brazil revealed by otolith chemistry, J. Fish Biol., 10.1111/jfb.14500 Avigliano, 2020, Statolith chemistry as a stock tag in the Argentine shortfin squid Illex argentinus, Reg. Stud. Mar. Sci. Ben-Tzvi, 2007, The inclusion of sub-detection limit LA-ICPMS data, in the analysis of otolith microchemistry, by use of a palindrome sequence analysis (PaSA), Limnol. Oceanogr. Methods, 95, 97, 10.4319/lom.2007.5.97 Biolé, 2019, Fish stocks of Urophycis brasiliensis revealed by otolith fingerprint and shape in the Southwestern Atlantic Ocean, Estuar. Coast. Shelf Sci., 229, 10.1016/j.ecss.2019.106406 Bouchard, 2015, Spatial segregation, dispersion and migration in early stages of polar cod Boreogadus saida revealed by otolith chemistry, Mar. Biol., 162, 855, 10.1007/s00227-015-2629-5 Bradbury, 2008, Otolith elemental composition and adult tagging reveal spawning site fidelity and estuarine dependency in rainbow smelt, Mar. Ecol. Prog. Ser., 368, 255, 10.3354/meps07583 Braga, 2008, Nutrient distributions over the Southwestern South Atlantic continental shelf from Mar del Plata (Argentina) to Itajaí (Brazil): winter-summer aspects, Cont. Shelf Res., 28, 1649, 10.1016/j.csr.2007.06.018 Braverman, 2009, Distribution of whitemouth croaker (Micropogonias furnieri, Desmarest 1823) larvae in the Río de la Plata estuarine front, Estuar. Coast. Shelf Sci., 82, 557, 10.1016/j.ecss.2009.02.018 Braverman, 2015, Indirect validation of daily increments in whitemouth croaker (Micropogonias furnieri) larvae otoliths, Rev. Investig. y Desarro. Pesq., 67, 59 Brown, 2009, Otolith chemistry analyses indicate that water Sr:Ca is the primary factor influencing otolith Sr:Ca for freshwater and diadromous fish but not for marine fish, Can. J. Fish. Aquat. Sci., 66, 1790, 10.1139/F09-112 Carozza, 2012 Carozza, 2004, Corvina rubia (Micropogonias furnieri), El Mar Argentino y sus Recur. Pesq., 4, 255 Casselman, 1990, Growth and relative size of calcified structures of fish, Trans. Am. Fish. Soc., 119, 673, 10.1577/1548-8659(1990)119<0673:GARSOC>2.3.CO;2 Catalán, 2018, Potential fishing-related effects on fish life history revealed by otolith microchemistry, Fish. Res., 199, 186, 10.1016/j.fishres.2017.11.008 Chapman, 2012, Partial migration in fishes: causes and consequences, J. Fish Biol., 81, 456, 10.1111/j.1095-8649.2012.03342.x Cotrina, 1986, Estudio preliminar de la determinación de edad en la corvina (Micropogonias furnieri), Frente Marítimo, 1, 311 Cousseau, 1998 CTMFM, 2020 Elsdon, 2003, Relationship between water and otolith elemental concentrations in juvenile black bream Acanthopagrus butcheri, Mar. Ecol. Prog. Ser., 260, 263, 10.3354/meps260263 FAO, 2021 Franco, 2019, Leave forever or return home? The case of the whitemouth croaker Micropogonias furnieri in coastal systems of southeastern Brazil indicated by otolith microchemistry, Mar. Environ. Res., 144, 28, 10.1016/j.marenvres.2018.11.015 Gillanders, 2011, Population differences in otolith chemistry have a genetic basis in Menidia menidia, Can. J. Fish. Aquat. Sci., 68, 105, 10.1139/F10-147 Guerrero, 1997 Guerrero, 1997, Physical oceanography of the Río de la Plata Estuary, Argentina, Cont. Shelf Res., 17, 727, 10.1016/S0278-4343(96)00061-1 Haimovici, 2016, Stocks y unidades de manejo de la corvina Micropogonias furnieri (Desmarest, 1823) en el Atlántico sudoccidental, Lat. Am. J. Aquat. Res., 44, 1080, 10.3856/vol44-issue5-fulltext-18 Hamilton, 2009, Otolith barium profiles verify the timing of settlement in a coral reef fish, Mar. Ecol. Prog. Ser., 385, 237, 10.3354/meps08054 Jochum, 2011, Determination of reference values for NIST SRM 610-617 glasses following ISO guidelines, Geostand. Geoanal. Res., 35, 397, 10.1111/j.1751-908X.2011.00120.x Kalish, 1990, Use of otolith microchemistry to distinguish the progeny of sympatric anadromous and non-anadromous salmonids, Fish. Bull., 88, 657 Kerr, 2014, Chemical composition of fish hard parts as anatural marker of fish stocks, 205 Kruskal, 1964, Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis, Psychometrika, 29, 27, 10.1007/BF02289565 Liberoff, 2014, Transgenerational effects of anadromy on juvenile growth traits in an introduced population of rainbow trout (Oncorhynchus mykiss), Can. J. Fish. Aquat. Sci., 71, 398, 10.1139/cjfas-2013-0466 Lima, 2012, Early development and allometric shifts during the ontogeny of a marine catfish (Cathorops spixii-Ariidae), J. Appl. Ichthyol., 28, 217, 10.1111/j.1439-0426.2011.01903.x Limburg, 2011, Tracking Baltic hypoxia and cod migration over millennia with natural tags, Proc. Natl. Acad. Sci., 108, 177, 10.1073/pnas.1100684108 Limburg, 2015, In search of the dead zone: use of otoliths for tracking fish exposure to hypoxia, J. Mar. Syst., 141, 167, 10.1016/j.jmarsys.2014.02.014 Lin, 2007, Salinities, not diets, affect strontium/calcium ratios in otoliths of Anguilla japonica, J. Exp. Mar. Bio. Ecol., 341, 254, 10.1016/j.jembe.2006.10.025 Loewen, 2016, Linking physiology and biomineralization processes to ecological inferences on the life history of fishes, Comp. Biochem. Physiol., Part A Mol. Integr. Physiol., 202, 123, 10.1016/j.cbpa.2016.06.017 Lorenzo, 2013, Evaluación y recomendaciones de manejo para el año 2011, Frente Marítimo, 23, 177 Lucas, 2005, Coastal oceanographic regimes of the northern argentine Continental Shelf (34-43°S), Estuar. Coast. Shelf Sci., 65, 405, 10.1016/j.ecss.2005.06.015 Macchi, 1996, Análisis temporal del proceso de maduración y determinación de la incidencia de atresias en la corvina rubia (Micropogonias furnieri), Frente Marítimo, 11, 73 Macchi, 2003, Seasonal egg production of whitemouth croaker (Micropogonias furnieri) in the Río de la Plata Estuary, Argentina-Uruguay, Fish. Bull., 101, 332 Maichak de Carvalho, 2020, Spatial environmental variability of natural markers and habitat use of Cathorops spixii in a neotropical estuary from otolith chemistry, J. Mar. Biol. Assoc. U.K., 100, 783, 10.1017/S0025315420000752 Márquez, 2013, Reseña de herramientas genéticas utilizadas en el análisis de la estructura poblacional de las corvinas del Río de la Plata y su Frente Marítimo, Frente Marítimo, 23, 291 Mianzan, 2001, The Río de la Plata Estuary, Argentina-Uruguay, 185 Militelli, 2013, Influence of environmental factors on the spawning of Sciaenids in the Buenos Aires Coastal Zone, Argentina, Ciencias Mar., 39, 55, 10.7773/cm.v39i1.2176 Mohan, 2015, Habitat use of juvenile striped bass Morone saxatilis (Actinopterygii: moronidae) in rivers spanning a salinity gradient across a shallow wind-driven estuary, Environ. Biol. Fishes, 98, 1105, 10.1007/s10641-014-0344-6 Norbis, 2005, Presence of two whitemouth croaker (Micropogonias furnieri, Pisces: sciaenidae) groups in the Río de la Plata spawning coastal area as consequence of reproductive migration, Fish. Res., 74, 134, 10.1016/j.fishres.2005.03.005 Panfili, 2012, Habitat residence during continental life of the European eel Anguilla anguilla investigated using linear discriminant analysis applied to otolith Sr:Ca ratios, Aquat. Biol., 15, 175, 10.3354/ab00414 Pearce, 1997, A compilation of new and published major and trace element data for NIST SRM 610 and NIST SRM 612 glass reference materials, Geostand. Newsl., 21, 115, 10.1111/j.1751-908X.1997.tb00538.x Pisonero, 2019, Critical evaluation of fast and highly resolved elemental distribution in single cells using LA-ICP-SFMS, J. Anal. At. Spectrom., 34, 10.1039/C8JA00096D Puig, 2005, Identification and characterization of croaker spawning areas, Frente Marítimo, 20, 35 Ranaldi, 2008, Zinc incorporation in the otoliths of juvenile pink snapper (Pagrus auratus Forster): the influence of dietary versus waterborne sources, J. Exp. Mar. Bio. Ecol., 360, 56, 10.1016/j.jembe.2008.03.013 Reis-Santos, 2013, Effects of temperature, salinity and water composition on otolith elemental incorporation of Dicentrarchus labrax, J. Exp. Mar. Bio. Ecol., 446, 245, 10.1016/j.jembe.2013.05.027 Rogers, 2019, Discriminating natal source populations of a temperate marine fish using larval otolith chemistry, Front. Mar. Sci., 6, 1, 10.3389/fmars.2019.00711 Rohlf, 1970, Adaptive hierarchical clustering schemes, Syst. Biol., 19, 58, 10.1093/sysbio/19.1.58 Scartascini, 2015, Otoliths as a proxy for seasonality: the case of Micropogonias furnieri from the northern coast of San Matías Gulf, Río Negro, Patagonia, Argentina, Quat. Int., 373, 136, 10.1016/j.quaint.2014.11.046 Sturrock, 2015, Quantifying physiological influences on otolith microchemistry, Methods Ecol. Evol., 6, 806, 10.1111/2041-210X.12381 Tabouret, 2010, Simultaneous use of strontium:calcium and barium:calcium ratios in otoliths as markers of habitat: application to the European eel (Anguilla anguilla) in the Adour basin, South West France, Mar. Environ. Res., 70, 35, 10.1016/j.marenvres.2010.02.006 Tabouret, 2011, Otolith microchemistry in Sicydium punctatum: indices of environmental condition changes after recruitment, Aquat. Living Resour., 24, 369, 10.1051/alr/2011137 Tanner, 2011, Spatial and ontogenetic variability in the chemical composition of juvenile common sole (Solea solea) otoliths, Estuar. Coast. Shelf Sci., 91, 150, 10.1016/j.ecss.2010.10.008 Tanner, 2012, Testing an otolith geochemistry approach to determine population structure and movements of European hake in the northeast Atlantic Ocean and Mediterranean Sea, Fish. Res., 125–126, 198, 10.1016/j.fishres.2012.02.013 Tran, 2019, Changes in environmental salinity during the life of Pangasius krempfi in the Mekong Delta (vietnam) estimated from otolith Sr: Ca ratios, Mar. Freshw. Res., 10.1071/MF18269 Volpedo, 2006, Otolith chemical composition as a useful tool for sciaenid stock discrimination in the south-western Atlantic, Sci. Mar., 70, 325, 10.3989/scimar.2006.70n2325 Walther, 2006, Water, not food, contributes the majority of strontium and barium deposited in the otoliths of a marine fish, Mar. Ecol. Prog. Ser., 311, 125, 10.3354/meps311125 Wang, 2014, Otolith elemental ratios of flathead mullet Mugil cephalus in Taiwanese waters reveal variable patterns of habitat use, Estuar. Coast. Shelf Sci., 151, 124, 10.1016/j.ecss.2014.08.024 Yoshinaga, 2000, Fish otolith reference material for quality assurance of chemical analyses, Mar. Chem., 69, 91, 10.1016/S0304-4203(99)00098-5