Optimization of Big Data Parallel Scheduling Based on Dynamic Clustering Scheduling Algorithm
Tóm tắt
Từ khóa
Tài liệu tham khảo
Wu, G., et al. (2013). A decentralized approach for mining event correlations in distributed system monitoring. Journal of Parallel and Distributed Computing, 73(3), 330–340. https://doi.org/10.1016/j.jpdc.2012.09.007
Qiu, M., et al. (2015). Data allocation for hybrid memory with genetic algorithm. IEEE Transactions on Emerging Topics in Computing, 3(4), 544–555. https://doi.org/10.1109/TETC.2015.2398824
Qiu, M., et al. (2008). Energy minimization with loop fusion and multi-functional-unit scheduling for multidimensional DSP. Journal of Parallel and Distributed Computing, 68(4):443–455. https://doi.org/10.1016/j.jpdc.2007.06.014. URL https://www.sciencedirect.com/science/article/pii/S0743731507001013
Wang, J., Qiu, M., & Guo, B. (2017). Enabling real-time information service on telehealth system over cloud-based big data platform. Journal of Systems Architecture, 72, 69–79.
Qiu, L., Gai, K., & Qiu, M. (2016). Optimal big data sharing approach for tele-health in cloud computing. 2016 IEEE International Conference on Smart Cloud (SmartCloud), 184–189. https://doi.org/10.1109/SmartCloud.2016.21
Qiu, M., et al. (2013). Rna nanotechnology for computer design and in vivo computation. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 371(2000)
Qiu, M., Li, H., & Sha, E. H. (2009). Heterogeneous real-time embedded software optimization considering hardware platform. In Shin SY, Ossowski S (Eds.) Proceedings of the 2009 ACM Symposium on Applied Computing (SAC), (pp. 1637–1641). Honolulu, Hawaii, USA, March 9-12, 2009, ACM. https://doi.org/10.1145/1529282.1529651
Qiu, M., et al. (2013). Security-aware optimization for ubiquitous computing systems with SEAT graph approach. Journal of Computer and System Sciences, 79(5), 518–529. https://doi.org/10.1016/j.jcss.2012.11.002
Li, Y., Song, Y., Jia, L., et al. (2020). Intelligent fault diagnosis by fusing domain adversarial training and maximum mean discrepancy via ensemble learning. IEEE Trans on Industrial Informatics, 17(4), 2833–2841.
Qiu, M., Gai, K., & Xiong, Z. (2018). Privacy-preserving wireless communications using bipartite matching in social big data. FGCS, 87, 772–781.
Novak, A., Sucha, P., Novotny, M., Stec, R., & Hanzalek, Z. (2022). Scheduling jobs with normally distributed processing times on parallel machines. European Journal of Operational Research, 297(2), 422–441. https://doi.org/10.1016/j.ejor.2021.05.01. URL https://ideas.repec.org/a/eee/ejores/v297y2022i2p422-441.html
Qiu, M., et al. (2008). Energy minimization with loop fusion and multi-functional-unit scheduling for multidimensional DSP. Journal of Parallel and Distributed Computing, 68(4), 443–455. URL https://www.sciencedirect.com/science/article/pii/S0743731507001013. https://doi.org/10.1016/j.jpdc.2007.06.014
Qiu, M., Guo, M., Liu, M., et al. (2009). Loop scheduling and bank type assignment for heterogeneous multi-bank memory. JPDC, 69, 546–558.
Goossens, S., Chandrasekar, K., Akesson, B., & Goossens, K. (2016). Memory Controllers for Mixed-Time-Criticality Systems: Architectures. Methodologies and Trade-Offs: Springer Publishing Company, Incorporated.
Kordon, A. M. (2020). A fixed-parameter algorithm for scheduling unit dependent tasks on parallel machines with time windows. Discrete Applied Mathematics. URL https://hal.archives-ouvertes.fr/hal-03041735
Niño, A., Reyes, S., & Carbó-Dorca, R. (2021). An HPC hybrid parallel approach to the experimental analysis of fermat’s theorem extension to arbitrary dimensions on heterogeneous computer systems. J Supercomput, 77(10), 11328–11352. https://doi.org/10.1007/s11227-021-03727-2
Niu, J., Gao, Y., Qiu, M., & Ming, Z. (2012). Selecting proper wireless network interfaces for user experience enhancement with guaranteed probability. JPDC, 72, 1565–1575.
Qiu, M., et al. (2006). Efficent algorithm of energy minimization for heterogeneous wireless sensor network. In E. Sha, S. K. Han, C. Z. Xu, M. H. Kim, L. T. Yang, & B. Xiao (Eds.), Embedded and Ubiquitous Computing (pp. 25–34). Heidelberg: Springer, Berlin Heidelberg, Berlin.
Lu, Z., Wang, N., Wu, J., & Qiu, M. (2018). IoTDeM: An IoT Big Data-oriented MapReduce performance prediction extended model in multiple edge clouds. J Parallel Distributed Comput, 118, 316–327.
Jiang, W., Shen, Y., Liu, L., Zhao, X., & Shi, L. (2021). A new method for a class of parallel batch machine scheduling problem. Flexible Services and Manufacturing Journal, 1–33.
Lei, Z., Lei, X., & Long, J. (2021). Memory-aware scheduling parallel real-time tasks for multicore systems. International Journal of Software Engineering and Knowledge Engineering, 31, 613–634.
Du, Y., et al. (2020). A data-driven parallel scheduling approach for multiple agile earth observation satellites. IEEE Transactions on Evolutionary Computation, 24, 679–693.
Alidaee, B., Wang, H., Kethley, B., & Landram, F. G. (2019). A unified view of parallel machine scheduling with interdependent processing rates. Journal of Scheduling, 1–17.
Guan, L. Y., Li, J., Li, W., & Lichen, J. (2019). Improved approximation algorithms for the combination problem of parallel machine scheduling and path. Journal of Combinatorial Optimization, 1–9.
Peng, W. (2021). Big data mining and analysis based on convolutional fuzzy neural network. Arabian Journal for Science and Engineering.
Shang, T., Zhao, Z., Ren, X., & Liu, J. (2021). Differential identifiability clustering algorithms for big data analysis. Science China Information Sciences, 64.
Pasupathi, S., Shanmuganathan, V., Kaliappan, M., Robinson, Y. H., & Kim, M. (2021). Trend analysis using agglomerative hierarchical clustering approach for time series big data. The Journal of Supercomputing, 1–20.
Cui, M. (2021). Big data medical behavior analysis based on machine learning and wireless sensors. Neural Computing and Applications.
Mansour, R. F., et al. (2021). Artificial intelligence with big data analytics-based brain intracranial hemorrhage e-diagnosis using ct images. Neural Computing and Applications, 1–13.
Anuradha, J. (2021). Big data based stock trend prediction using deep cnn with reinforcement-lstm model. International Journal of Systems Assurance Engineering and Management, 1–11.