Data analysis methods for prospectivity modelling as applied to mineral exploration targeting: State-of-the-art and outlook
Tài liệu tham khảo
Abedi, 2012, Integration of various geophysical data with geological and geochemical data to determine additional drilling for copper exploration, J. Appl. Geophys., 83, 35, 10.1016/j.jappgeo.2012.05.003
Abedi, 2012, Support vector machine for multi-classification of mineral prospectivity areas, Comput. Geosci., 46, 272, 10.1016/j.cageo.2011.12.014
Abedi, 2013, Application of fuzzy-AHP method to integrate geophysical data in a prospect scale, a case study: seridune copper deposit, Boll. Geofis. Teor. Appl., 54, 145
Aitken, 2018, A role for data richness mapping in exploration decision making, Ore Geol. Rev., 99, 398, 10.1016/j.oregeorev.2018.07.002
Al-Emran, 2018, The impact of knowledge management processes on information systems: a systematic review, Int. J. Inf. Manag., 43, 173, 10.1016/j.ijinfomgt.2018.08.001
Almasi, 2017, Prospectivity analysis of orogenic gold deposits in Saqez-Sardasht Goldfield, Zagros Orogen, Iran, Ore Geol. Rev., 91, 1066, 10.1016/j.oregeorev.2017.11.001
Bonham-Carter, 1994
Bonham-Carter, 1989, Weights of evidence modelling: a new approach to mapping mineral potential, 171
Buccianti, 2015, The FOREGS repository: modelling variability in stream water on a continental scale revising classical diagrams from CoDA (compositional data analysis) perspective, J. Geochem. Explor., 154, 94, 10.1016/j.gexplo.2014.12.003
Carranza, 2008, Geochemical anomaly and mineral prospectivity mapping in GIS, vol. 11
Carranza, 2009, Controls on mineral deposit occurrence inferred from analysis of their spatial pattern and spatial association with geological features, Ore Geol. Rev., 35, 383, 10.1016/j.oregeorev.2009.01.001
Carranza, 2009, Improved wildcat modeling of mineral prospectivity, Resour. Geol., 60, 129, 10.1111/j.1751-3928.2010.00121.x
Carranza, 2011, From predictive mapping of mineral prospectivity to quantitative estimation of number of undiscovered prospects, Resour. Geol., 61, 30, 10.1111/j.1751-3928.2010.00146.x
Carranza, 2017, Natural resources research publications on geochemical anomaly and mineral potential mapping, and introduction to the special issue of papers in these fields, Nat. Resour. Res., 26, 379, 10.1007/s11053-017-9348-1
Carranza, 2001, Logistic regression for geologically constrained mapping of gold potential, Baguio district, Philippines, Explor. Min. Geol., 10, 165, 10.2113/0100165
Carranza, 2001, Geologically-constrained fuzzy mapping of gold mineralization potential, Baguio district, Philippines, Nat. Resour. Res., 10, 125, 10.1023/A:1011500826411
Carranza, 2002, Spatial association of mineral occurrences and curvilinear geological features, Math. Geol., 34, 203, 10.1023/A:1014416319335
Carranza, 2016, Data-driven predictive modeling of mineral prospectivity using random forests: a case study in Catanduanes Island (Philippines), Nat. Resour. Res., 25, 35, 10.1007/s11053-015-9268-x
Carranza, 2010, Predictive mapping of prospectivity and quantitative estimation of undiscovered VMS deposits in Skellefte district (Sweden), Ore Geol. Rev., 38, 219, 10.1016/j.oregeorev.2010.02.003
Carranza, 2005, Application of data-driven evidential belief functions to prospectivity mapping for aquamarine-bearing pegmatites, Lundazi District, Zambia, Nat. Resour. Res., 14, 47, 10.1007/s11053-005-4678-9
Carranza, 2009, Mapping of prospectivity and estimation of number of undiscovered prospects for lode-gold, southwestern Ashanti Belt, Ghana, Mineral. Deposita, 44, 915, 10.1007/s00126-009-0250-6
Chen, 2017, Mapping mineral prospectivity using an extreme learning machine regression, Ore Geol. Rev., 80, 200, 10.1016/j.oregeorev.2016.06.033
Chen, 2019, Modelling ore-forming processes through a cosine similarity measure: improved targeting of porphyry copper deposits in the Manzhouli belt, China, Ore Geol. Rev., 107, 108, 10.1016/j.oregeorev.2019.02.006
Cheng, 1999, Fuzzy weights of evidence method and its application in mineral potential mapping, Nat. Resour. Res., 8, 27, 10.1023/A:1021677510649
Chung, 1980, Regression models for estimating mineral resources from geological map data, J. Int. Assoc. Math. Geol., 12, 473, 10.1007/BF01028881
Chung, 1993, The Representation of Geoscience Information for data integration, Nonrenewable Resour., 2, 122, 10.1007/BF02272809
Chung, 1991, Combination rules of spatial geoscience data for mineral exploration, Geoinformatics, 2, 159, 10.6010/geoinformatics1990.2.2_159
Coolbaugh, 2007, Assessment of exploration bias in data-driven predictive models and the estimation of undiscovered resources, Nat. Resour. Res., 16, 199, 10.1007/s11053-007-9037-6
Cox, 1989
De Caritat, 2016, A continental-scale geochemical atlas for resource exploration and environmental management: the National Geochemical Survey of Australia, Geochem. Explor. Environ. Anal., 16, 3, 10.1144/geochem2014-322
De Quadros, 2006, Mineral-potential mapping: a comparison of weights-of-evidence and fuzzy methods, Nat. Resour. Res., 15, 49, 10.1007/s11053-006-9010-9
Elyasi, 2019, Risk-based analysis in mineral potential mapping: application of quantifier-guided ordered weighted averaging method, Nat. Resour. Res., 28, 931, 10.1007/s11053-018-9428-x
Fabbri, 2008, On blind tests and spatial prediction models, Nat. Resour. Res., 17, 107, 10.1007/s11053-008-9072-y
Ford, 2010, The effect of map scale on geological complexity for computer-aided exploration targeting, Ore Geol. Rev., 38, 156, 10.1016/j.oregeorev.2010.03.008
Ford, 2016, A comparative analysis of weights of evidence, evidential belief functions, and fuzzy logic for mineral potential mapping using incomplete data at the scale of investigation, Nat. Resour. Res., 25, 19, 10.1007/s11053-015-9263-2
Gao, 2016, Mapping mineral prospectivity for Cu polymetallic mineralization in southwest Fujian Province, China, Ore Geol. Rev., 75, 16, 10.1016/j.oregeorev.2015.12.005
Ghasemzadeh, 2019, Stream sediment geochemical data analysis for district-scale mineral exploration targeting: measuring the performance of the spatial U-statistic and C-A fractal modeling, Ore Geol. Rev., 113, 103115, 10.1016/j.oregeorev.2019.103115
Ghasemzadeh, 2021, Identifying porphyry-Cu geochemical footprints using local neighborhood statistics in Baft area, Iran, Front. Earth Sci., 10.1007/s11707-020-0853-x
Gill, 2018, Configuration information system architecture: Insights from applied action design research, Inf. Manag.
González-Álvarez, 2010, Hydrothermal Ni prospectivity analysis of Tasmania, Australia, Ore Geol. Rev., 38, 168, 10.1016/j.oregeorev.2010.04.003
Goodchild, 2009, Geographic information systems and science: today and tomorrow, Ann. GIS, 15, 3, 10.1080/19475680903250715
Grabowski, 2014
Groves, 2000, Late-kinematic timing of orogenic gold deposits and significance for computer-based exploration techniques with emphasis on the Yilgarn Block, Western Australia, Ore Geol. Rev., 17, 1, 10.1016/S0169-1368(00)00002-0
Grunsky, 2020, State-of-the-art analysis of geochemical data for mineral exploration, Geochem. Explor. Environ. Anal., 20, 217, 10.1144/geochem2019-031
Grunsky, 2009, Process recognition in multi-element soil and stream-sediment geochemical data, Appl. Geochem., 24, 1602, 10.1016/j.apgeochem.2009.04.024
Hagemann, 2016, Mineral system analysis: Quo vadis, Ore Geol. Rev., 76, 504, 10.1016/j.oregeorev.2015.12.012
Hagemann, 2016, BIF-hosted iron mineral system: a review, Ore Geol. Rev., 76, 317, 10.1016/j.oregeorev.2015.11.004
Harris, 1990
Harris, 2015, Predictive lithological mapping of Canada’s North using Random Forest classification applied to geophysical and geochemical data, Comput. Geosci., 80, 9, 10.1016/j.cageo.2015.03.013
Harris, 1994, Computer-enhancement techniques for the integration of remotely sensed, geophysical, and thematic data for the geosciences, Can. J. Remote. Sens., 20, 210
Harris, 2001, Application of GIS processing techniques for producing mineral prospectivity maps – a case study: mesothermal Au in the Swayze Greenstone Belt, Ontario, Canada, Nat. Resour. Res., 10, 91, 10.1023/A:1011548709573
Harris, 2003, A comparative analysis of favourability mappings by weights of evidence, probabilistic neural networks, discriminant analysis, and logistic regression, Nat. Resour. Res., 12, 241, 10.1023/B:NARR.0000007804.27450.e8
Harris, 2008, Mineral potential modelling for the greater Nahanni ecosystem using GIS based analytical methods, Nat. Resour. Res., 17, 51, 10.1007/s11053-008-9069-6
Harris, 2015, Data-and knowledge-driven mineral prospectivity maps for Canada’s North, Ore Geol. Rev., 71, 788, 10.1016/j.oregeorev.2015.01.004
Hronsky, 2004, The science of exploration targeting, vol. 33, 129
Hronsky, 2011, Self-organized critical systems and ore formation: the key to spatial targeting?, Soc. Econ. Geol. Newsl., 84, 14
Hronsky, 2008, Science of targeting: definition, strategies, targeting and performance measurement, Aust. J. Earth Sci., 55, 3, 10.1080/08120090701581356
Hronsky, 2019, Applying spatial prospectivity mapping to exploration targeting: fundamental practical issues and suggested solutions for the future, Ore Geol. Rev., 107, 647, 10.1016/j.oregeorev.2019.03.016
Huston, 2006, Australian Zn–Pb–Ag ore-forming systems: a review and analysis, Econ. Geol., 101, 1117, 10.2113/gsecongeo.101.6.1117
Joly, 2012, Exploration targeting for orogenic gold deposits in the Granites-Tanami Orogen: mineral system analysis, targeting model and prospectivity analysis, Ore Geol. Rev., 48, 349, 10.1016/j.oregeorev.2012.05.004
Joly, 2015, Mineral systems approach applied to GIS-based 2D-prospectivity modelling of geological regions: insights from Western Australia, Ore Geol. Rev., 71, 673, 10.1016/j.oregeorev.2015.06.007
Knox-Robinson, 1994
Knox-Robinson, 2000, Vectorial fuzzy logic: a novel technique for enhanced mineral prospectivity mapping, with reference to the orogenic gold mineralisation potential of the Kalgoorlie Terrane, Western Australia, Aust. J. Earth Sci., 47, 929, 10.1046/j.1440-0952.2000.00816.x
Knox-Robinson, 1997, Towards a holistic exploration strategy: using geographic information systems as a tool to enhance exploration, Aust. J. Earth Sci., 44, 453, 10.1080/08120099708728326
Knox-Robinson, 1996
Kreuzer, 2010, Risk and uncertainty in mineral exploration: implications for valuing mineral exploration properties, vol. 100, 20
Kreuzer, 2008, Linking mineral deposit models to quantitative risk analysis and decision-making in exploration, Econ. Geol., 103, 829, 10.2113/gsecongeo.103.4.829
Kreuzer, 2015, Comparing prospectivity modelling results and past exploration data: a case study of porphyry Cu–Au mineral systems in the Macquarie Arc, Lachlan Fold Belt, New South Wales, Ore Geol. Rev., 71, 516, 10.1016/j.oregeorev.2014.09.001
Kreuzer, 2020, Introduction to the special issue on spatial modelling and analysis of ore forming processes in mineral exploration targeting, Ore Geol. Rev., 119, 103391, 10.1016/j.oregeorev.2020.103391
Lancianese, 2015, Different spatial methods in regional geochemical mapping at high density sampling: an application on stream sediment of Romagna Apennines, Northern Italy, J. Geochem. Explor., 154, 143, 10.1016/j.gexplo.2014.12.014
Lang, 2018, Related families-based attribute reduction of dynamic covering decision information systems, Knowl.-Based Syst., 162, 161, 10.1016/j.knosys.2018.05.019
Laudon, 2014
Li, 2019, 3D geological modeling for mineral system approach to GIS-based prospectivity analysis: case study of an MVT Pb–Zn deposit, Nat. Resour. Res., 28, 995, 10.1007/s11053-018-9429-9
Li, 2020, Convolutional neural network and transfer learning based mineral prospectivity modeling for geochemical exploration of Au mineralization within the Guandian–Zhangbaling area, Anhui Province, China, Appl. Geochem., 122, 104747, 10.1016/j.apgeochem.2020.104747
Lisitsin, 2013, Regional prospectivity analysis for hydrothermal-remobilised nickel mineral systems in western Victoria, Australia, Ore Geol. Rev., 52, 100, 10.1016/j.oregeorev.2012.04.001
Lisitsin, 2014, Probabilistic fuzzy logic modeling — quantifying uncertainty of mineral prospectivity models using Monte Carlo simulations, Math. Geosci., 46, 747, 10.1007/s11004-014-9534-1
Luo, 2003, Data-driven fuzzy analysis in quantitative mineral resource assessment, Comput. Geosci., 29, 3, 10.1016/S0098-3004(02)00078-X
Lusty, 2012, Reconnaissance-scale prospectivity analysis for gold mineralisation in the Southern Uplands-Down-Longford Terrane, Northern Ireland, Nat. Resour. Res., 21, 359, 10.1007/s11053-012-9183-3
Markwitz, 2010, Magmatic nickel sulfide mineralization in Zimbabwe: review of deposits and development of exploration criteria for prospectivity analysis, Ore Geol. Rev., 38, 139, 10.1016/j.oregeorev.2010.07.004
McCuaig, 2000, The current status and future of the interface between the exploration industry and economic geology research, Rev. Econ. Geol., 13, 553
McCuaig, 2014, The mineral system concept: the key to exploration targeting, Soc. Econ. Geol. Spec. Publ., 18, 153
McCuaig, 2007, Fooling ourselves — dealing with model uncertainty in a mineral systems approach to exploration. Mineral exploration and research — digging deeper, 1435
McCuaig, 2010, Translating the mineral systems approach into an effective exploration targeting system, Ore Geol. Rev., 38, 128, 10.1016/j.oregeorev.2010.05.008
McKay, 2016, Comparison of the data-driven Random Forests model and a knowledge-driven method for mineral prospectivity mapping: a case study for gold deposits around the Huritz Group and Nueltin Suite, Nunavut, Canada, Nat. Resour. Res., 25, 125, 10.1007/s11053-015-9274-z
Mihalasky, 2001, Mineral potential modelling of gold and silver mineralization in the Nevada Great Basin—a GIS-based analysis using weights of evidence, 10.3133/ofr01291
Mihalasky, 2001, Lithodiversity and its spatial association with metallic mineral sites, Great Basin of Nevada, Nat. Resour. Res., 10, 209, 10.1023/A:1012569225111
Moon, 1990, Integration of geophysical and geological data using evidential belief function, IEEE Trans. Geosci. Remote Sens., 28, 711, 10.1109/TGRS.1990.572988
Nykänen, 2008, Radial basis functional link nets used as a prospectivity mapping tool for orogenic gold deposits within the Central Lapland Greenstone Belt, Northern Fennoscandian Shield, Nat. Resour. Res., 17, 29, 10.1007/s11053-008-9062-0
Nykänen, 2007, Spatial analysis techniques as successful mineral-potential mapping tools for orogenic Gold deposits in the Northern Fennoscandian Shield, Finland, Nat. Resour. Res., 16, 85, 10.1007/s11053-007-9046-5
Nykänen, 2008, Reconnaissance scale conceptual fuzzy-logic prospectivity modeling for iron oxide copper—gold deposits in the northern Fennoscandian Shield, Finland, Aust. J. Earth Sci., 55, 25, 10.1080/08120090701581372
Nykänen, 2008, Combined conceptual/empirical prospectivity mapping for orogenic gold in the Northern Fennoscandian Shield, Finland, Aust. J. Earth Sci., 55, 39, 10.1080/08120090701581380
Pan, 2000
Parsa, 2017, A receiver operating characteristics-based geochemical data fusion technique for targeting undiscovered mineral deposits, Nat. Resour. Res., 27, 15, 10.1007/s11053-017-9351-6
Parsa, 2017, An improved data-driven fuzzy mineral prospectivity mapping procedure; cosine amplitude-based similarity approach to delineate exploration targets, Int. J. Appl. Earth Obs. Geoinf., 58, 157
Partington, 2010, Developing models using GIS to assess geological and economic risk: an example from VMS copper gold mineral exploration in Oman, Ore Geol. Rev., 38, 197, 10.1016/j.oregeorev.2010.02.002
Partington, 2004, 239
Payne, 2014, From 2D to 3D: prospectivity modelling in the Taupo Volcanic Zone, New Zealand, Ore Geol. Rev.
Pirajno, 2009
Pirajno, 2010, Intracontinental strike-slip faults, associated magmatism, mineral systems and mantle dynamics: examples from NW China and Altay-Sayan (Siberia), J. Geodyn., 50, 325, 10.1016/j.jog.2010.01.018
Pirajno, 2016, A classification of mineral systems, overviews of plate tectonic margins and examples of ore deposits associated with convergent margins, Gondwana Res., 33, 44, 10.1016/j.gr.2015.08.013
Pirajno, 2011, A review of mineral systems and associated tectonic settings of northern Xinjiang, NW China, Geosci. Front., 2, 157, 10.1016/j.gsf.2011.03.006
Pirajno, 2015, Besshi-type mineral systems in the Palaeoproterozoic Bryah Basin, Capricorn Orogen, Western Australia: implications for tectonic setting and geodynamic evolution, Geosci. Front.
Porwal, 2010, Introduction to the special issue: mineral prospectivity analysis and quantitative resource estimation, Ore Geol. Rev., 38, 121, 10.1016/j.oregeorev.2010.06.002
Porwal, 2003, Extended weights-of-evidence modelling for predictive mapping of base metal deposit potential in Aravalli province, western India, Explor. Min. Geol., 10, 155
Porwal, 2003, Artificial neural networks for mineral potential mapping: a case study from Aravalli Province, Western India, Nat. Resour. Res., 12, 155, 10.1023/A:1025171803637
Porwal, 2003, Knowledge-driven and data-driven fuzzy models for predictive mineral potential mapping, Nat. Resour. Res., 12, 1, 10.1023/A:1022693220894
Porwal, 2004, A hybrid neuro-fuzzy model for mineral potential mapping, Math. Geol., 36, 803, 10.1023/B:MATG.0000041180.34176.65
Porwal, 2006, Bayesian network classifiers for mineral potential mapping, Comput. Geosci., 32, 1, 10.1016/j.cageo.2005.03.018
Porwal, 2006, A hybrid fuzzy weights-of-evidence model for mineral potential mapping, Nat. Resour. Res., 15, 1, 10.1007/s11053-006-9012-7
Porwal, 2010, Weights-of-evidence and logistic regression modeling of magmatic nickel sulfide prospectivity in the Yilgarn Craton, Western Australia, Ore Geol. Rev., 38, 184, 10.1016/j.oregeorev.2010.04.002
Porwal, 2015, Fuzzy inference systems for prospectivity modeling of mineral systems and a case-study for prospectivity mapping of surficial Uranium in Yeelirrie Area, Western Australia, Ore Geol. Rev., 71, 839, 10.1016/j.oregeorev.2014.10.016
Prado, 2020, Modeling of Cu-Au prospectivity in the Carajas mineral province (Brazil) through machine learning: dealing with imbalanced training data, Ore Geol. Rev., 124, 103611, 10.1016/j.oregeorev.2020.103611
Rahimi, 2021, Supervised mineral exploration targeting and the challenges with the selection of deposit and non-deposit sites thereof, Appl. Geochem., 104940, 10.1016/j.apgeochem.2021.104940
Roy, 2006, Predictive mapping for copper–gold magmatic-hydrothermal systems in NW Argentina: use of a regional-scale GIS, application of an expert-guided data-driven approach, and comparison with results from a continental-scale GIS, Ore Geol. Rev., 29, 260, 10.1016/j.oregeorev.2005.10.002
Sadeghi, 2013, Rare earth element distribution and mineralization in Sweden: an application of principal component analysis to FOREGS soil geochemistry, J. Geochem. Explor., 133, 160, 10.1016/j.gexplo.2012.10.015
Sadeghi, 2015, Analysis and mapping of soil geochemical anomalies: implications for bedrock mapping and gold exploration in Giyani area, South Africa, J. Geochem. Explor., 154, 180, 10.1016/j.gexplo.2014.11.018
Singer, 2006, Typing mineral deposits using their associated rocks and grades and tonnages in a probabilistic neural network, Math. Geol., 38, 465, 10.1007/s11004-005-9023-7
Singer, 2008, Mineral deposit densities for estimating mineral resources, Math. Geosci., 40, 33, 10.1007/s11004-007-9127-3
Singer, 1999, Examining risk in mineral exploration, Nat. Resour. Res., 8, 111, 10.1023/A:1021838618750
Singer, 2003, Typing mineral deposits using their grades and tonnages in an artificial neural network, Nat. Resour. Res., 12, 201, 10.1023/A:1025128021384
Singer, 2010
Sun, 2019, GIS-based mineral prospectivity mapping using machine learning methods: a case study from Tongling ore district, eastern China, Ore Geol. Rev., 109, 26, 10.1016/j.oregeorev.2019.04.003
Tsoukalas, 1997
Wang, 2020, Manganese potential mapping in western Guangxi-southeastern Yunnan (China) via spatial analysis and modal-adaptive prospectivity modeling, Trans. Nonferrous Metals Soc. China, 30, 1058, 10.1016/S1003-6326(20)65277-3
Wyborn, 1994, Australian Proterozoic mineral systems: essential ingredients and mappable criteria
Xiong, 2017, Effects of misclassification costs on mapping mineral prospectivity, Ore Geol. Rev., 82, 1, 10.1016/j.oregeorev.2016.11.014
Xiong, 2021, A positive and unlabeled learning algorithm for mineral prospectivity mapping, Comput. Geosci., 147, 104667, 10.1016/j.cageo.2020.104667
Xiong, 2018, Mapping mineral prospectivity through big data analytics and a deep learning algorithm, Ore Geol. Rev., 102, 811, 10.1016/j.oregeorev.2018.10.006
Yousefi, 2017, Recognition of an enhanced multi-element geochemical signature of porphyry copper deposits for vectoring into mineralized zones and delimiting exploration targets in Jiroft area, SE Iran, Ore Geol. Rev., 83, 200, 10.1016/j.oregeorev.2016.12.024
Yousefi, 2017, Analysis of zoning pattern of geochemical indicators for targeting of porphyry-Cu mineralization: a pixel-based mapping approach, Nat. Resour. Res., 26, 429, 10.1007/s11053-017-9334-7
Yousefi, 2015, Fuzzification of continuous-value spatial evidence for mineral prospectivity mapping, Comput. Geosci., 74, 97, 10.1016/j.cageo.2014.10.014
Yousefi, 2015, Prediction-area (P-A) plot and C-A fractal analysis to classify and evaluate evidential maps for mineral prospectivity modeling, Comput. Geosci., 79, 69, 10.1016/j.cageo.2015.03.007
Yousefi, 2015, Geometric average of spatial evidence data layers: a GIS-based multi-criteria decision-making approach to mineral prospectivity mapping, Comput. Geosci., 83, 72, 10.1016/j.cageo.2015.07.006
Yousefi, 2016, Data-driven index overlay and Boolean logic mineral prospectivity modeling in greenfields exploration, Nat. Resour. Res., 25, 3, 10.1007/s11053-014-9261-9
Yousefi, 2017, Union score and fuzzy logic mineral prospectivity mapping using discretized and continuous spatial evidence values, J. Afr. Earth Sci., 128, 47, 10.1016/j.jafrearsci.2016.04.019
Yousefi, 2016, Data-driven logistic-based weighting of geochemical and geological evidence layers in mineral prospectivity mapping, J. Geochem. Explor., 164, 94, 10.1016/j.gexplo.2015.10.008
Yousefi, 2017, Introduction to the special issue: GIS-based mineral potential targeting, J. Afr. Earth Sci., 12, 1, 10.1016/j.jafrearsci.2017.02.023
Yousefi, 2012, Geochemical mineralization probability index (GMPI): a new approach to generate enhanced stream sediment geochemical evidential map for increasing probability of success in mineral potential mapping, J. Geochem. Explor., 115, 24, 10.1016/j.gexplo.2012.02.002
Yousefi, 2013, Weighted drainage catchment basin mapping of stream sediment geochemical anomalies for mineral potential mapping, J. Geochem. Explor., 128, 88, 10.1016/j.gexplo.2013.01.013
Yousefi, 2014, Application of staged factor analysis and logistic function to create a fuzzy stream sediment geochemical evidence layer for mineral prospectivity mapping, Geochem. Explor. Environ. Anal., 14, 45, 10.1144/geochem2012-144
Yousefi, 2019, Exploration information systems—a proposal for the future use of GIS in mineral exploration targeting, Geol. Rev., 111, 103005, 10.1016/j.oregeorev.2019.103005
Zhang, 2016, A comparative study of fuzzy weights of evidence and random forests for mapping mineral prospectivity for skarn-type Fe deposits in the southwestern Fujian metallogenic belt, China, Sci. China Earth Sci., 59, 556, 10.1007/s11430-015-5178-3
Zuo, 2020, Geodata Science-based mineral prospectivity mapping: a review, Nat. Resour. Res., 29, 3415, 10.1007/s11053-020-09700-9
Zuo, 2011, Support vector machine: a tool for mapping mineral prospectivity, Comput. Geosci., 37, 1967, 10.1016/j.cageo.2010.09.014
Zuo, 2020, Effects of random negative training samples on mineral prospectivity mapping, Nat. Resour. Res., 29, 3443, 10.1007/s11053-020-09668-6
Zuo, 2019, Deep learning and its application in geochemical mapping, Earth Sci. Rev., 192, 1, 10.1016/j.earscirev.2019.02.023
Zuo, 2021, Uncertainties in GIS-based mineral prospectivity mapping: key types, potential impacts and possible solutions, Nat. Resour. Res., 10.1007/s11053-021-09871-z