Strengthening mechanism in graphene nanoplatelets reinforced aluminum composite fabricated through spark plasma sintering

Materials Science and Engineering: A - Tập 695 - Trang 20-28 - 2017
Ankita Bisht1, Mukul Srivastava1,2, R. Manoj Kumar1, Indranil Lahiri2, Debrupa Lahiri1
1Biomaterials and Multiscale Mechanics Laboratory, Department of Metallurgical and Materials Engineering, Indian Institute of Technology Roorkee, Uttarakhand, 247667, India
2Nanomaterials and Applications Laboratory, Department of Metallurgical and Materials Engineering, Indian Institute of Technology Roorkee, Uttarakhand 247667, India

Tài liệu tham khảo

Corcione, 2012, Characterization of nanocomposites by thermal analysis, Materials, 5, 2960, 10.3390/ma5122960 Li, 2010, Nanocomposites of polymer and inorganic nanoparticles for optical and magnetic applications, Nano Rev., 1, 1, 10.3402/nano.v1i0.5214 Anandhan, 2011, Polymer nanocomposites: from synthesis to applications, 1 Huang, 2014, Carbon materials reinforced aluminum composites: a review, Acta Metall. Sin. (Engl. Lett.), 27, 775, 10.1007/s40195-014-0160-1 Pierson, 1993 Chand, 2000, Review carbon fibers for composites, J. Mater. Sci., 35, 1303, 10.1023/A:1004780301489 Iijima, 1991, Helical microtubules of graphitic carbon, Nature, 354, 56, 10.1038/354056a0 Stankovich, 2006, Graphene-based composite materials, Nature, 442, 282, 10.1038/nature04969 Novoselov, 2004, Electric field effect in atomically thin carbon films, Science, 306, 666, 10.1126/science.1102896 Geim, 2011, Nobel lecture: random walk to graphene, Rev. Mod. Phys., 83, 851, 10.1103/RevModPhys.83.851 Geim, 2009, Graphene: status and prospects, Science, 324, 1530, 10.1126/science.1158877 Singh, 2011, Graphene based materials: past, present and future, Prog. Mater. Sci., 56, 1178, 10.1016/j.pmatsci.2011.03.003 Lahiri, 2012, Graphene nanoplatelet-induced strengthening of ultrahigh molecular weight polyethylene and biocompatibility in vitro, ACS Appl. Mater. Interfaces, 4, 2234, 10.1021/am300244s Li, 2015, Synergistic strengthening effect of graphene-carbon nanotube hybrid structure in aluminum matrix composites, Carbon, 95, 419, 10.1016/j.carbon.2015.08.014 Bartolucci, 2011, Graphene-aluminum nanocomposites, Mater. Sci. Eng. A, 528, 7933, 10.1016/j.msea.2011.07.043 Li, 2015, Microstructure and tensile properties of bulk nanostructured aluminum/graphene composites prepared via cryomilling, Mater. Sci. Eng. A, 626, 400, 10.1016/j.msea.2014.12.102 Rashad, 2015, Investigation on microstructural, mechanical and electrochemical properties of aluminum composites reinforced with graphene nanoplatelets, Prog. Nat. Sci. Mater. Int., 25, 460, 10.1016/j.pnsc.2015.09.005 Rashad, 2014, Effect of Graphene Nanoplatelets addition on mechanical properties of pure aluminum using a semi-powder method, Prog. Nat. Sci. Mater. Int., 24, 101, 10.1016/j.pnsc.2014.03.012 Pérez-Bustamante, 2015, Microstructural and hardness behavior of graphene-nanoplatelets/aluminum composites synthesized by mechanical alloying, J. Alloy. Compd., 615, S578, 10.1016/j.jallcom.2014.01.225 Ashwath, 2014, The effect of ball milling & reinforcement percentage on sintered samples of aluminum alloy metal matrix composites, Procedia Eng., 97, 1027, 10.1016/j.proeng.2014.12.380 Yan, 2014, Investigating aluminum alloy reinforced by graphene nanoflakes, Mater. Sci. Eng. A, 612, 440, 10.1016/j.msea.2014.06.077 Wang, 2012, Reinforcement with graphene nanosheets in aluminum matrix composites, Scr. Mater., 66, 594, 10.1016/j.scriptamat.2012.01.012 Shin, 2015, Deformation behavior of aluminum alloy matrix composites reinforced with few-layer graphene, Compos. Part A Appl. Sci. Manuf., 78, 42, 10.1016/j.compositesa.2015.08.001 Reddy, 2015, Role of reduced graphene oxide on mechanical-thermal properties of aluminum metal matrix nanocomposites, Mater. Today Proc., 2, 1270, 10.1016/j.matpr.2015.07.042 Bakshi, 2010, Carbon nanotube reinforced metal matrix composites – a review, Int. Mater. Rev., 55, 41, 10.1179/095066009X12572530170543 Orrù, 2009, Consolidation/synthesis of materials by electric current activated/assisted sintering, Mater. Sci. Eng. R Rep., 63, 127, 10.1016/j.mser.2008.09.003 Cao, 2012, The growth of carbon nanotubes in aluminum powders by the catalytic pyrolysis of polyethylene glycol, Carbon, 50, 1057, 10.1016/j.carbon.2011.10.011 Kim, 2013, Strengthening effect of single-atomic-layer graphene in metal-graphene nanolayered composites, Nat. Commun., 4, 2114, 10.1038/ncomms3114 Li, 2016, A versatile method for uniform dispersion of nanocarbons in metal matrix based on electrostatic interactions, Nano-Micro Lett., 8, 54, 10.1007/s40820-015-0061-5 Cha, 2005, Extraordinary strengthening effect of carbon nanotubes in metal-matrix nanocomposites processed by molecular-level mixing, Adv. Mater., 17, 1377, 10.1002/adma.200401933 Li, 2015, Enhanced mechanical properties of graphene (reduced graphene oxide)/aluminum composites with a bioinspired nanolaminated structure, Nano Lett., 15, 8077, 10.1021/acs.nanolett.5b03492 Shin, 2015, Strengthening behavior of few-layered graphene/aluminum composites, Carbon, 82, 143, 10.1016/j.carbon.2014.10.044 W. Tian, S. Li, B. Wang, X. Chen, J. Liu, M. Yu, Graphene-Reinforced Aluminum Matrix Composites Prepared by Spark Plasma Sintering, 23, 2016, pp. 723–729. Oliver, 2004, Measurement of hardness and elastic modulus by instrumented indentation: advances in understanding and refinements to methodology, J. Mater. Res., 19, 3, 10.1557/jmr.2004.19.1.3 Xie, 2001, Effect of interface behaviour between particles on properties of pure Al powder compacts by spark plasma sintering, Mater. Trans., 42, 1846, 10.2320/matertrans.42.1846 Xie, 2003, Frequency effect on pulse electric current sintering process of pure aluminum powder, Mater. Sci. Eng. A, 359, 384, 10.1016/S0921-5093(03)00393-9 Sweet, 2014, Microstructure and mechanical properties of air atomized aluminum powder consolidated via spark plasma sintering, Mater. Sci. Eng. A, 608, 273, 10.1016/j.msea.2014.04.078 Boostani, 2015, Strengthening mechanisms of graphene sheets in aluminum matrix nanocomposites, Mater. Des., 88, 983, 10.1016/j.matdes.2015.09.063 Rashad, 2014, Synergetic effect of graphene nanoplatelets (GNPs) and multi-walled carbon nanotube (MW-CNTs) on mechanical properties of pure magnesium, J. Alloy. Compd., 603, 111, 10.1016/j.jallcom.2014.03.038 Ryu, 2003, Generalized shear-lag model for load transfer in SiC/Al metal-matrix composites, J. Mater. Res., 18, 2851, 10.1557/JMR.2003.0398 Zhang, 2006, Consideration of Orowan strengthening effect in particulate-reinforced metal matrix nanocomposites: a model for predicting their yield strength, Scr. Mater., 54, 1321, 10.1016/j.scriptamat.2005.12.017 Arsenault, 1986, Dislocation generation due to differences between the coefficients of thermal expansion, Mater. Sci. Eng., 81, 175, 10.1016/0025-5416(86)90261-2