Strengthening mechanism in graphene nanoplatelets reinforced aluminum composite fabricated through spark plasma sintering
Tài liệu tham khảo
Corcione, 2012, Characterization of nanocomposites by thermal analysis, Materials, 5, 2960, 10.3390/ma5122960
Li, 2010, Nanocomposites of polymer and inorganic nanoparticles for optical and magnetic applications, Nano Rev., 1, 1, 10.3402/nano.v1i0.5214
Anandhan, 2011, Polymer nanocomposites: from synthesis to applications, 1
Huang, 2014, Carbon materials reinforced aluminum composites: a review, Acta Metall. Sin. (Engl. Lett.), 27, 775, 10.1007/s40195-014-0160-1
Pierson, 1993
Chand, 2000, Review carbon fibers for composites, J. Mater. Sci., 35, 1303, 10.1023/A:1004780301489
Iijima, 1991, Helical microtubules of graphitic carbon, Nature, 354, 56, 10.1038/354056a0
Stankovich, 2006, Graphene-based composite materials, Nature, 442, 282, 10.1038/nature04969
Novoselov, 2004, Electric field effect in atomically thin carbon films, Science, 306, 666, 10.1126/science.1102896
Geim, 2011, Nobel lecture: random walk to graphene, Rev. Mod. Phys., 83, 851, 10.1103/RevModPhys.83.851
Geim, 2009, Graphene: status and prospects, Science, 324, 1530, 10.1126/science.1158877
Singh, 2011, Graphene based materials: past, present and future, Prog. Mater. Sci., 56, 1178, 10.1016/j.pmatsci.2011.03.003
Lahiri, 2012, Graphene nanoplatelet-induced strengthening of ultrahigh molecular weight polyethylene and biocompatibility in vitro, ACS Appl. Mater. Interfaces, 4, 2234, 10.1021/am300244s
Li, 2015, Synergistic strengthening effect of graphene-carbon nanotube hybrid structure in aluminum matrix composites, Carbon, 95, 419, 10.1016/j.carbon.2015.08.014
Bartolucci, 2011, Graphene-aluminum nanocomposites, Mater. Sci. Eng. A, 528, 7933, 10.1016/j.msea.2011.07.043
Li, 2015, Microstructure and tensile properties of bulk nanostructured aluminum/graphene composites prepared via cryomilling, Mater. Sci. Eng. A, 626, 400, 10.1016/j.msea.2014.12.102
Rashad, 2015, Investigation on microstructural, mechanical and electrochemical properties of aluminum composites reinforced with graphene nanoplatelets, Prog. Nat. Sci. Mater. Int., 25, 460, 10.1016/j.pnsc.2015.09.005
Rashad, 2014, Effect of Graphene Nanoplatelets addition on mechanical properties of pure aluminum using a semi-powder method, Prog. Nat. Sci. Mater. Int., 24, 101, 10.1016/j.pnsc.2014.03.012
Pérez-Bustamante, 2015, Microstructural and hardness behavior of graphene-nanoplatelets/aluminum composites synthesized by mechanical alloying, J. Alloy. Compd., 615, S578, 10.1016/j.jallcom.2014.01.225
Ashwath, 2014, The effect of ball milling & reinforcement percentage on sintered samples of aluminum alloy metal matrix composites, Procedia Eng., 97, 1027, 10.1016/j.proeng.2014.12.380
Yan, 2014, Investigating aluminum alloy reinforced by graphene nanoflakes, Mater. Sci. Eng. A, 612, 440, 10.1016/j.msea.2014.06.077
Wang, 2012, Reinforcement with graphene nanosheets in aluminum matrix composites, Scr. Mater., 66, 594, 10.1016/j.scriptamat.2012.01.012
Shin, 2015, Deformation behavior of aluminum alloy matrix composites reinforced with few-layer graphene, Compos. Part A Appl. Sci. Manuf., 78, 42, 10.1016/j.compositesa.2015.08.001
Reddy, 2015, Role of reduced graphene oxide on mechanical-thermal properties of aluminum metal matrix nanocomposites, Mater. Today Proc., 2, 1270, 10.1016/j.matpr.2015.07.042
Bakshi, 2010, Carbon nanotube reinforced metal matrix composites – a review, Int. Mater. Rev., 55, 41, 10.1179/095066009X12572530170543
Orrù, 2009, Consolidation/synthesis of materials by electric current activated/assisted sintering, Mater. Sci. Eng. R Rep., 63, 127, 10.1016/j.mser.2008.09.003
Cao, 2012, The growth of carbon nanotubes in aluminum powders by the catalytic pyrolysis of polyethylene glycol, Carbon, 50, 1057, 10.1016/j.carbon.2011.10.011
Kim, 2013, Strengthening effect of single-atomic-layer graphene in metal-graphene nanolayered composites, Nat. Commun., 4, 2114, 10.1038/ncomms3114
Li, 2016, A versatile method for uniform dispersion of nanocarbons in metal matrix based on electrostatic interactions, Nano-Micro Lett., 8, 54, 10.1007/s40820-015-0061-5
Cha, 2005, Extraordinary strengthening effect of carbon nanotubes in metal-matrix nanocomposites processed by molecular-level mixing, Adv. Mater., 17, 1377, 10.1002/adma.200401933
Li, 2015, Enhanced mechanical properties of graphene (reduced graphene oxide)/aluminum composites with a bioinspired nanolaminated structure, Nano Lett., 15, 8077, 10.1021/acs.nanolett.5b03492
Shin, 2015, Strengthening behavior of few-layered graphene/aluminum composites, Carbon, 82, 143, 10.1016/j.carbon.2014.10.044
W. Tian, S. Li, B. Wang, X. Chen, J. Liu, M. Yu, Graphene-Reinforced Aluminum Matrix Composites Prepared by Spark Plasma Sintering, 23, 2016, pp. 723–729.
Oliver, 2004, Measurement of hardness and elastic modulus by instrumented indentation: advances in understanding and refinements to methodology, J. Mater. Res., 19, 3, 10.1557/jmr.2004.19.1.3
Xie, 2001, Effect of interface behaviour between particles on properties of pure Al powder compacts by spark plasma sintering, Mater. Trans., 42, 1846, 10.2320/matertrans.42.1846
Xie, 2003, Frequency effect on pulse electric current sintering process of pure aluminum powder, Mater. Sci. Eng. A, 359, 384, 10.1016/S0921-5093(03)00393-9
Sweet, 2014, Microstructure and mechanical properties of air atomized aluminum powder consolidated via spark plasma sintering, Mater. Sci. Eng. A, 608, 273, 10.1016/j.msea.2014.04.078
Boostani, 2015, Strengthening mechanisms of graphene sheets in aluminum matrix nanocomposites, Mater. Des., 88, 983, 10.1016/j.matdes.2015.09.063
Rashad, 2014, Synergetic effect of graphene nanoplatelets (GNPs) and multi-walled carbon nanotube (MW-CNTs) on mechanical properties of pure magnesium, J. Alloy. Compd., 603, 111, 10.1016/j.jallcom.2014.03.038
Ryu, 2003, Generalized shear-lag model for load transfer in SiC/Al metal-matrix composites, J. Mater. Res., 18, 2851, 10.1557/JMR.2003.0398
Zhang, 2006, Consideration of Orowan strengthening effect in particulate-reinforced metal matrix nanocomposites: a model for predicting their yield strength, Scr. Mater., 54, 1321, 10.1016/j.scriptamat.2005.12.017
Arsenault, 1986, Dislocation generation due to differences between the coefficients of thermal expansion, Mater. Sci. Eng., 81, 175, 10.1016/0025-5416(86)90261-2