Understanding treatment-subgroup effect in primary and secondary prevention of cardiovascular disease: An exploration using meta-analyses of individual patient data

Journal of Clinical Epidemiology - Tập 139 - Trang 160-166 - 2021
Victor D Torres Roldan1, Oscar J Ponce1, Meritxell Urtecho1, Gabriel F Torres2, Tereza Belluzzo3, Victor Montori1, Carolina Liu2, Francisco Barrera1,4, Alejandro Diaz4, Larry Prokop5, Gordon Guyatt6, Victor M Montori1
1Knowledge and Evaluation Research Unit, Mayo Clinic, Rochester, MN, USA
2School of Medicine, Cayetano Heredia Peruvian University, Lima, Peru
3Internal Medicine, Jablonec nad Nisou Hospital, Jablonec nad Nisou, Czech Republic
4Plataforma INVEST Medicina UANL-KER Unit Mayo Clinic (KER Unit Mexico), School of Medicine, Universidad Autonoma de Nuevo Leon, Monterrey, Nuevo Leon, Mexico
5Department of Library-Public Services, Mayo Clinic, Rochester, MN, USA
6McMaster University, Hamilton, Ontario, Canada

Tài liệu tham khảo

Roth GA, Johnson C, Abajobir A, Abd-Allah F, Abera SF, Abyu G, et al. Global, regional, and national burden of cardiovascular diseases for 10 causes, 1990 to 2015. J Am Coll Cardiol.2017;70(1):1-25. Clark DW. Preventive medicine for the doctor in his community: an epidemiologic approach. Am J Public Health Nations Health.1958;48(7):947-947. Hobbs FDR. Cardiovascular disease: different strategies for primary and secondary prevention?Heart.2004;90(10):1217. Kohli P, Whelton SP, Hsu S, Yancy CW, Stone NJ, Chrispin J, et al. Clinician's guide to the updated ABCs of cardiovascular disease prevention. J Am Heart Assoc.2014;3(5):e001098-e001098. Hsu S, Ton V-K, Dominique Ashen M, Martin SS, Gluckman TJ, Kohli P, et al. A clinician's guide to the ABCs of cardiovascular disease prevention: the Johns Hopkins Ciccarone Center for the Prevention of Heart Disease and American College of Cardiology Cardiosource Approach to the Million Hearts Initiative. Clin Cardiol.2013;36(7):383-393. Deeks JJ. Issues in the selection of a summary statistic for meta-analysis of clinical trials with binary outcomes. Stat Med.2002;21(11):1575-1600. Schmid CH, Lau J, McIntosh MW, Cappelleri JC. An empirical study of the effect of the control rate as a predictor of treatment efficacy in meta-analysis of clinical trials. Stat Med.1998;17(17):1923-1942. Furukawa TA, Guyatt GH, Griffith LE. Can we individualize the 'number needed to treat'? An empirical study of summary effect measures in meta-analyses. Int J Epidemiol.2002;31(1):72-76. Force USPST, Bibbins-Domingo K, Grossman DC, Curry SJ, Davidson KW, Epling JW, Jr., García FAR, et al. Statin use for the primary prevention of cardiovascular disease in adults: US preventive services task force recommendation statement. JAMA.2016;316(19):1997-2007. Arnett DK, Blumenthal RS, Albert MA, Buroker AB, Goldberger ZD, Hahn EJ, et al. 2019 ACC/AHA guideline on the primary prevention of cardiovascular disease: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation.2019;140(11):e596-e646. Hasenfuß G. Secondary prevention of cardiovascular diseases: current state of the art. Kardiol Pol.2018;76(12):1671-1679. Moher D, Liberati A, Tetzlaff J, Altman DG, The PG. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med.2009;6(7):e1000097. Grant RL. Converting an odds ratio to a range of plausible relative risks for better communication of research findings. BMJ: British Medical Journal.2014;348:f7450. Cholesterol Treatment Trialists C. Efficacy and safety of statin therapy in older people: a meta-analysis of individual participant data from 28 randomised controlled trials. Lancet.2019;393(10170):407-415. Aggarwal R, Steinkamp J, Chiu N, Petrie B, Mirzan H. Intensive blood pressure targets for diabetic and other high-risk populations: a pooled individual patient data analysis. Hypertension.2018;71(5):833-839. Clemens A, Fraessdorf M, Friedman J. Cardiovascular outcomes during treatment with dabigatran: comprehensive analysis of individual subject data by treatment. Vasc Health Risk Manag.2013;9:599-615. Cholesterol Treatment Trialists C, Baigent C, Blackwell L, Emberson J, Holland LE, Reith C, Bhala N, et al. Efficacy and safety of more intensive lowering of LDL cholesterol: a meta-analysis of data from 170,000 participants in 26 randomised trials. Lancet.2010;376(9753):1670-1681. Antithrombotic Trialists C, Baigent C, Blackwell L, Collins R, Emberson J, Godwin J, Peto R, et al. Aspirin in the primary and secondary prevention of vascular disease: collaborative meta-analysis of individual participant data from randomised trials. Lancet.2009;373(9678):1849-1860. Tierney JF, Vale C, Riley R, Smith CT, Stewart L, Clarke M, et al. Individual Participant Data (IPD) meta-analyses of randomised controlled trials: guidance on their use. PLoS Med.2015;12(7):e1001855. Koopman L, van der Heijden GJMG, Hoes AW, Grobbee DE, Rovers MM. Empirical comparison of subgroup effects in conventional and individual patient data meta-analyses. Int J Technol Assess Health Care.2008;24(3):358-361. Belias M, Rovers MM, Reitsma JB, Debray TPA, IntHout J. Statistical approaches to identify subgroups in meta-analysis of individual participant data: a simulation study. BMC Med Res Method.2019;19(1):183. Sun X, Ioannidis JPA, Agoritsas T, Alba AC, Guyatt G. How to Use a Subgroup Analysis. In: Guyatt G, Rennie D, Meade MO, Cook DJ, eds. Users' Guides to the Medical Literature: A Manual for Evidence-Based Clinical Practice, 3rd ed. New York, NY: McGraw-Hill Education; 2015. Blood Pressure Lowering Treatment Trialists C. Blood pressure-lowering treatment based on cardiovascular risk: a meta-analysis of individual patient data. Lancet (London, England).2014;384(9943):591-598. Cholesterol Treatment Trialists C, Mihaylova B, Emberson J, Blackwell L, Keech A, Simes J, Barnes EH, et al. The effects of lowering LDL cholesterol with statin therapy in people at low risk of vascular disease: meta-analysis of individual data from 27 randomised trials. Lancet (London, England).2012;380(9841):581-590. Rumsfeld JS, Joynt KE, Maddox TM. Big data analytics to improve cardiovascular care: promise and challenges. Nat Rev Cardiol.2016;13(6):350-359. Krittanawong C, Zhang H, Wang Z, Aydar M, Kitai T. Artificial intelligence in precision cardiovascular medicine. J Am Coll Cardiol.2017;69(21):2657-2664. Weng SF, Reps J, Kai J, Garibaldi JM, Qureshi N. Can machine-learning improve cardiovascular risk prediction using routine clinical data? PLoS One.2017;12(4):e0174944.