Investigating the viability of PERC solar cells fabricated on Ga- instead of B-doped monocrystalline silicon wafer
Tài liệu tham khảo
Blakers, 1989, 22.8% efficient silicon solar cell, Appl. Phys. Lett., 55, 1363, 10.1063/1.101596
Schmidt, 1997, Investigation of carrier lifetime instabilities in Cz-grown silicon, 13
Bothe, 2003, Recombination-enhanced formation of the metastable boron–oxygen complex in crystalline silicon, Appl. Phys. Lett., 83, 1125, 10.1063/1.1600837
Fischer, 1973, 404
Ramspeck, 2012, 861
Das, 2011, The impact of cell design on light induced degradation in p-type silicon solar cells, PVSC, IEEE ASME Trans. Mechatron., 158
Jensen, 2017, Evolution of LeTID defects in p-type multicrystalline silicon during degradation and regeneration, IEEE J. Photovolt., 7, 980, 10.1109/JPHOTOV.2017.2695496
Niewelt, 2017, Light-induced activation and deactivation of bulk defects in boron-doped float-zone silicon, J. Appl. Phys., 121, 185702, 10.1063/1.4983024
Sperber, 2018, Bulk and surface-related degradation in lifetime samples made of Czochralski silicon passivated by plasma-enhanced chemical vapor deposited layer stacks, Phys. Status Solidi, 215, 1800741, 10.1002/pssa.201800741
Chen, 2017, Evidence of an identical firing-activated carrier-induced defect in monocrystalline and multicrystalline silicon, Sol. Energy Mater. Cells, 172, 293, 10.1016/j.solmat.2017.08.003
Kersten, 2015, Degradation of multicrystalline silicon solar cells and modules after illumination at elevated temperature, Sol. Energy Mater. Cells, 142, 83, 10.1016/j.solmat.2015.06.015
Petter, 2016, Dependence of LeTID on brick height for different wafer suppliers with several resistivities and dopants, 9th Int. Work. Cryst. Silicon Sol. Cells, 370
Kersten, 2017, System performance loss due to LeTID, Energy Procedia, 124, 540, 10.1016/j.egypro.2017.09.260
Grant, 2020, Lifetime instabilities in gallium doped monocrystalline PERC silicon solar cells, Sol. Energy Mater. Cells, 206
Grant, 2021
Wilking, 2014, Influence of bound hydrogen states on BO-regeneration kinetics and consequences for high-speed regeneration processes, Sol. Energy Mater. Cells, 131, 2, 10.1016/j.solmat.2014.06.027
Krauß, 2016, Fast regeneration processes to avoid light-induced degradation in multicrystalline silicon solar cells, IEEE J. Photovolt., 6, 1427, 10.1109/JPHOTOV.2016.2598273
Saitoh, 1999, 553
Glunz, 1998, 1343
Glunz, 1999, Comparison of boron- and gallium-doped p-type Czochralski silicon for photovoltaic application, Prog. Photovoltaics Res. Appl., 7, 463, 10.1002/(SICI)1099-159X(199911/12)7:6<463::AID-PIP293>3.0.CO;2-H
Glunz, 2001, Minority carrier lifetime degradation in boron-doped Czochralski silicon, J. Appl. Phys., 90, 2397, 10.1063/1.1389076
Meng, 2017, High-quality industrial n-type silicon wafers with an efficiency of over 23% for Si heterojunction solar cells, Front. Energy Res., 11, 78, 10.1007/s11708-016-0435-5
Saitoh, 2001, Suppression of light degradation of carrier lifetimes in low-resistivity CZ–Si solar cells, Sol. Energy Mater. Cells, 65, 277, 10.1016/S0927-0248(00)00103-3
Schmidt, 2004, Structure and transformation of the metastable boron- and oxygen-related defect center in crystalline silicon, Phys. Rev. B, 69, 1129, 10.1103/PhysRevB.69.024107
Saitoh, 2000, 1206
Metz, 2000, 1189
Hoshikawa, 2006, Segregation of Ga during growth of Si single crystal, J. Cryst. Growth, 290, 338, 10.1016/j.jcrysgro.2006.01.026
Gotoh, 2010, Ga segregation during Czochralski-Si crystal growth with Ge co-doping, J. Cryst. Growth, 312, 2865, 10.1016/j.jcrysgro.2010.07.007
Arivanandhan, 2009, Effects of B and Ge co-doping on minority carrier lifetime in Ga-doped Czochralski-silicon, J. Appl. Phys., 106, 10.1063/1.3159038
Zhou, 2020, Light and elevated temperature induced degradation in B–Ga co-doped cast mono Si PERC solar cells, Sol. Energy Mater. Cells, 211, 110508, 10.1016/j.solmat.2020.110508
Yoon, 2012, Deep level transient spectroscopy and minority carrier lifetime study on Ga-doped continuous Czochralski silicon, Appl. Phys. Lett., 101, 2397, 10.1063/1.4766337
Anselmo, 1993, Numerical and experimental study of a solid pellet feed continuous Czochralski growth process for silicon single crystals, J. Cryst. Growth, 131, 247, 10.1016/0022-0248(93)90420-2
Cox, 1966, Ohmic contacts for GaAs devices, Solid State Electron., 10, 1213, 10.1016/0038-1101(67)90063-9
Catchpole, 2002, Modelling the PERC structure for industrial quality silicon, Sol. Energy Mater. Sol. Cells, 73, 189, 10.1016/S0927-0248(01)00124-6
Fischer, 1994
Fischer, 2003
Plagwitz, 2005, vol. 2005, 999
Plagwitz, 2010, Analytical model for the diode saturation current of point-contacted solar cells, Prog. Photovoltaics Res. Appl., 14, 1, 10.1002/pip.637
Gatz, 2011, Evaluation of series resistance losses in screen-printed solar cells with local rear contacts, IEEE Journal of Photovoltaics, 1, 37, 10.1109/JPHOTOV.2011.2163925
Müller, 2014, Evaluation of determination methods of the Si/Al contact resistance of screen-printed passivated emitter and rear solar cells, J. Appl. Phys., 115, 1363, 10.1063/1.4867188
Kranz, 2015, Determination of the contact resistivity of screen-printed Al contacts formed by laser contact opening, Energy Procedia, 67, 64, 10.1016/j.egypro.2015.03.288
Engelhart, 2006
Hermann, 2010, Impact of surface topography and laser pulse duration for laser ablation of solar cell front side passivating SiNx layers, J. Appl. Phys., 108, 10.1063/1.3493204
Kim, 2013, Highly efficient PERC cells fabricated using the low cost laser ablation process, Sol. Energy Mater. Cells, 117, 126, 10.1016/j.solmat.2013.04.025
Hsiao, 2018, 266-nm ps laser ablation for copper-plated p-type selective emitter PERC silicon solar cells, IEEE J. Photovolt., 8, 952, 10.1109/JPHOTOV.2018.2834629
Felix, 2018, Laser contact openings for local poly-Si-metal contacts enabling 26.1%-efficient POLO-IBC solar cells, Sol. Energy Mater. Cells, 186, 184, 10.1016/j.solmat.2018.06.020
Fertig, 2015, Light-induced degradation of PECVD aluminium oxide passivated silicon solar cells, Phys. Status Solidi Rapid Res. Lett., 9, 41, 10.1002/pssr.201409424
Fritz, 2017, Temperature dependent degradation and regeneration of differently doped mc-Si materials, Energy Procedia, 124, 718, 10.1016/j.egypro.2017.09.085
Lindroos, 2013, Light-induced degradation in copper-contaminated gallium-doped silicon, Phys. Status Solidi Rapid Res. Lett., 7, 262, 10.1002/pssr.201307011
Naerland, 2017, On the recombination centers of iron-gallium pairs in Ga-doped silicon, J. Appl. Phys., 122, 10.1063/1.5000358
Regina, 2019, Imaging interstitial iron concentrations in gallium-doped silicon wafers, Phys. Status Solidi Rapid Res. Lett., 216, 1800655.1