Investigating the viability of PERC solar cells fabricated on Ga- instead of B-doped monocrystalline silicon wafer

Solar Energy Materials and Solar Cells - Tập 227 - Trang 111134 - 2021
Chuanke Chen1, Hong Yang1, Jianbo Wang2, Jun Lv3, He Wang1
1MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Science, Xi'an Jiaotong University, Xi'an 710049, PR China
2School of Electronic Science & Engineering, Southeast University, Nanjing, 210096, PR China
3Electronic Information Engineering College of Sanjiang University, Nanjing, 210012, PR China

Tài liệu tham khảo

Blakers, 1989, 22.8% efficient silicon solar cell, Appl. Phys. Lett., 55, 1363, 10.1063/1.101596 Schmidt, 1997, Investigation of carrier lifetime instabilities in Cz-grown silicon, 13 Bothe, 2003, Recombination-enhanced formation of the metastable boron–oxygen complex in crystalline silicon, Appl. Phys. Lett., 83, 1125, 10.1063/1.1600837 Fischer, 1973, 404 Ramspeck, 2012, 861 Das, 2011, The impact of cell design on light induced degradation in p-type silicon solar cells, PVSC, IEEE ASME Trans. Mechatron., 158 Jensen, 2017, Evolution of LeTID defects in p-type multicrystalline silicon during degradation and regeneration, IEEE J. Photovolt., 7, 980, 10.1109/JPHOTOV.2017.2695496 Niewelt, 2017, Light-induced activation and deactivation of bulk defects in boron-doped float-zone silicon, J. Appl. Phys., 121, 185702, 10.1063/1.4983024 Sperber, 2018, Bulk and surface-related degradation in lifetime samples made of Czochralski silicon passivated by plasma-enhanced chemical vapor deposited layer stacks, Phys. Status Solidi, 215, 1800741, 10.1002/pssa.201800741 Chen, 2017, Evidence of an identical firing-activated carrier-induced defect in monocrystalline and multicrystalline silicon, Sol. Energy Mater. Cells, 172, 293, 10.1016/j.solmat.2017.08.003 Kersten, 2015, Degradation of multicrystalline silicon solar cells and modules after illumination at elevated temperature, Sol. Energy Mater. Cells, 142, 83, 10.1016/j.solmat.2015.06.015 Petter, 2016, Dependence of LeTID on brick height for different wafer suppliers with several resistivities and dopants, 9th Int. Work. Cryst. Silicon Sol. Cells, 370 Kersten, 2017, System performance loss due to LeTID, Energy Procedia, 124, 540, 10.1016/j.egypro.2017.09.260 Grant, 2020, Lifetime instabilities in gallium doped monocrystalline PERC silicon solar cells, Sol. Energy Mater. Cells, 206 Grant, 2021 Wilking, 2014, Influence of bound hydrogen states on BO-regeneration kinetics and consequences for high-speed regeneration processes, Sol. Energy Mater. Cells, 131, 2, 10.1016/j.solmat.2014.06.027 Krauß, 2016, Fast regeneration processes to avoid light-induced degradation in multicrystalline silicon solar cells, IEEE J. Photovolt., 6, 1427, 10.1109/JPHOTOV.2016.2598273 Saitoh, 1999, 553 Glunz, 1998, 1343 Glunz, 1999, Comparison of boron- and gallium-doped p-type Czochralski silicon for photovoltaic application, Prog. Photovoltaics Res. Appl., 7, 463, 10.1002/(SICI)1099-159X(199911/12)7:6<463::AID-PIP293>3.0.CO;2-H Glunz, 2001, Minority carrier lifetime degradation in boron-doped Czochralski silicon, J. Appl. Phys., 90, 2397, 10.1063/1.1389076 Meng, 2017, High-quality industrial n-type silicon wafers with an efficiency of over 23% for Si heterojunction solar cells, Front. Energy Res., 11, 78, 10.1007/s11708-016-0435-5 Saitoh, 2001, Suppression of light degradation of carrier lifetimes in low-resistivity CZ–Si solar cells, Sol. Energy Mater. Cells, 65, 277, 10.1016/S0927-0248(00)00103-3 Schmidt, 2004, Structure and transformation of the metastable boron- and oxygen-related defect center in crystalline silicon, Phys. Rev. B, 69, 1129, 10.1103/PhysRevB.69.024107 Saitoh, 2000, 1206 Metz, 2000, 1189 Hoshikawa, 2006, Segregation of Ga during growth of Si single crystal, J. Cryst. Growth, 290, 338, 10.1016/j.jcrysgro.2006.01.026 Gotoh, 2010, Ga segregation during Czochralski-Si crystal growth with Ge co-doping, J. Cryst. Growth, 312, 2865, 10.1016/j.jcrysgro.2010.07.007 Arivanandhan, 2009, Effects of B and Ge co-doping on minority carrier lifetime in Ga-doped Czochralski-silicon, J. Appl. Phys., 106, 10.1063/1.3159038 Zhou, 2020, Light and elevated temperature induced degradation in B–Ga co-doped cast mono Si PERC solar cells, Sol. Energy Mater. Cells, 211, 110508, 10.1016/j.solmat.2020.110508 Yoon, 2012, Deep level transient spectroscopy and minority carrier lifetime study on Ga-doped continuous Czochralski silicon, Appl. Phys. Lett., 101, 2397, 10.1063/1.4766337 Anselmo, 1993, Numerical and experimental study of a solid pellet feed continuous Czochralski growth process for silicon single crystals, J. Cryst. Growth, 131, 247, 10.1016/0022-0248(93)90420-2 Cox, 1966, Ohmic contacts for GaAs devices, Solid State Electron., 10, 1213, 10.1016/0038-1101(67)90063-9 Catchpole, 2002, Modelling the PERC structure for industrial quality silicon, Sol. Energy Mater. Sol. Cells, 73, 189, 10.1016/S0927-0248(01)00124-6 Fischer, 1994 Fischer, 2003 Plagwitz, 2005, vol. 2005, 999 Plagwitz, 2010, Analytical model for the diode saturation current of point-contacted solar cells, Prog. Photovoltaics Res. Appl., 14, 1, 10.1002/pip.637 Gatz, 2011, Evaluation of series resistance losses in screen-printed solar cells with local rear contacts, IEEE Journal of Photovoltaics, 1, 37, 10.1109/JPHOTOV.2011.2163925 Müller, 2014, Evaluation of determination methods of the Si/Al contact resistance of screen-printed passivated emitter and rear solar cells, J. Appl. Phys., 115, 1363, 10.1063/1.4867188 Kranz, 2015, Determination of the contact resistivity of screen-printed Al contacts formed by laser contact opening, Energy Procedia, 67, 64, 10.1016/j.egypro.2015.03.288 Engelhart, 2006 Hermann, 2010, Impact of surface topography and laser pulse duration for laser ablation of solar cell front side passivating SiNx layers, J. Appl. Phys., 108, 10.1063/1.3493204 Kim, 2013, Highly efficient PERC cells fabricated using the low cost laser ablation process, Sol. Energy Mater. Cells, 117, 126, 10.1016/j.solmat.2013.04.025 Hsiao, 2018, 266-nm ps laser ablation for copper-plated p-type selective emitter PERC silicon solar cells, IEEE J. Photovolt., 8, 952, 10.1109/JPHOTOV.2018.2834629 Felix, 2018, Laser contact openings for local poly-Si-metal contacts enabling 26.1%-efficient POLO-IBC solar cells, Sol. Energy Mater. Cells, 186, 184, 10.1016/j.solmat.2018.06.020 Fertig, 2015, Light-induced degradation of PECVD aluminium oxide passivated silicon solar cells, Phys. Status Solidi Rapid Res. Lett., 9, 41, 10.1002/pssr.201409424 Fritz, 2017, Temperature dependent degradation and regeneration of differently doped mc-Si materials, Energy Procedia, 124, 718, 10.1016/j.egypro.2017.09.085 Lindroos, 2013, Light-induced degradation in copper-contaminated gallium-doped silicon, Phys. Status Solidi Rapid Res. Lett., 7, 262, 10.1002/pssr.201307011 Naerland, 2017, On the recombination centers of iron-gallium pairs in Ga-doped silicon, J. Appl. Phys., 122, 10.1063/1.5000358 Regina, 2019, Imaging interstitial iron concentrations in gallium-doped silicon wafers, Phys. Status Solidi Rapid Res. Lett., 216, 1800655.1