ApoAI-derived peptide increases glucose tolerance and prevents formation of atherosclerosis in mice
Tóm tắt
Finding new treatment alternatives for individuals with diabetes with severe insulin resistance is highly desired. To identify novel mechanisms that improve glucose uptake in skeletal muscle, independently from insulin levels and signalling, we have explored the therapeutic potential of a short peptide sequence, RG54, derived from apolipoprotein A-I (ApoA-I). INS-1E rat clonal beta cells, C2C12 rat muscle myotubes and J774 mouse macrophages were used to study the impact of RG54 peptide on glucose-stimulated insulin secretion, glucose uptake and cholesterol efflux, respectively. GTTs were carried out on diet-induced insulin-resistant and Leprdb diabetic mouse models treated with RG54 peptide, and the impact of RG54 peptide on atherosclerosis was evaluated in Apoe−/− mice. Control mice received ApoA-I protein, liraglutide or NaCl. The synthetic RG54 peptide induced glucose uptake in cultured muscle myotubes by a similar amount as insulin, and also primed pancreatic beta cells for improved glucose-stimulated insulin secretion. The findings were verified in diet-induced insulin-resistant and Leprdb diabetic mice, jointly confirming the physiological effect. The RG54 peptide also efficiently catalysed cholesterol efflux from macrophages and prevented the formation of atherosclerotic plaques in Apoe−/− mice. The RG54 peptide exhibits good prospects for providing glucose control and reducing the risk of cardiovascular disease in individuals with severe insulin resistance.
Tài liệu tham khảo
Defronzo RA, Tripathy D (2009) Skeletal muscle insulin resistance is the primary defect in type 2 diabetes. Diabetes Care 32(Suppl 2):S157–S163. https://doi.org/10.2337/dc09-S302
Forouzanfar MH, Alexander L, Anderson HR et al (2015) Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks in 188 countries, 1990-2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet 386(10010):2287–2323. https://doi.org/10.1016/S0140-6736(15)00128-2
Vazquez G, Duval S, Jacobs DR Jr, Silventoinen K (2007) Comparison of body mass index, waist circumference, and waist/hip ratio in predicting incident diabetes: a meta-analysis. Epidemiol Rev 29(1):115–128. https://doi.org/10.1093/epirev/mxm008
Rosenson RS, Brewer HB, Kingwell BA et al (2016) Dysfunctional HDL and atherosclerotic cardiovascular disease. Nat Rev Cardiol 13(1):48–60. https://doi.org/10.1038/nrcardio.2015.124
Siebel AL, Heywood SE, Kingwell BA (2015) HDL and glucose metabolism: current evidence and therapeutic potential. Front Pharmacol 6:258. https://doi.org/10.3389/fphar.2015.00258
Liu J, Van Klinken JB, Semiz S et al (2017) A Mendelian randomization study of metabolite profiles, fasting glucose, and type 2 diabetes. Diabetes 66(11):2915–2926. https://doi.org/10.2337/db17-0199
Dalla-Riva J, Stenkula KG, Petrlova J, Lagerstedt JO (2013) Discoidal HDL and apoA-I-derived peptides improve glucose uptake in skeletal muscle. J Lipid Res 54(5):1275–1282. https://doi.org/10.1194/jlr.M032904
Drew BG, Duffy SJ, Formosa MF et al (2009) High-density lipoprotein modulates glucose metabolism in patients with type 2 diabetes mellitus. Circulation 119(15):2103–2111. https://doi.org/10.1161/CIRCULATIONAHA.108.843219
Han R, Lai R, Ding Q et al (2007) Apolipoprotein A-I stimulates AMP-activated protein kinase and improves glucose metabolism. Diabetologia 50(9):1960–1968. https://doi.org/10.1007/s00125-007-0752-7
Lehti M, Donelan E, Abplanalp W et al (2013) High-density lipoprotein maintains skeletal muscle function by modulating cellular respiration in mice. Circulation 128(22):2364–2371. https://doi.org/10.1161/CIRCULATIONAHA.113.001551
Stenkula KG, Lindahl M, Petrlova J et al (2014) Single injections of apoA-I acutely improve in vivo glucose tolerance in insulin-resistant mice. Diabetologia 57(4):797–800. https://doi.org/10.1007/s00125-014-3162-7
Domingo-Espin J, Lindahl M, Nilsson-Wolanin O, Cushman SW, Stenkula KG, Lagerstedt JO (2016) Dual actions of apolipoprotein A-I on glucose-stimulated insulin secretion and insulin-independent peripheral tissue glucose uptake lead to increased heart and skeletal muscle glucose disposal. Diabetes 65(7):1838–1848. https://doi.org/10.2337/db15-1493
Cochran BJ, Ryder WJ, Parmar A et al (2016) In vivo PET imaging with [(18)F]FDG to explain improved glucose uptake in an apolipoprotein A-I treated mouse model of diabetes. Diabetologia 59(9):1977–1984. https://doi.org/10.1007/s00125-016-3993-5
Heywood SE, Richart AL, Henstridge DC et al (2017) High-density lipoprotein delivered after myocardial infarction increases cardiac glucose uptake and function in mice. Sci Transl Med 9(411). https://doi.org/10.1126/scitranslmed.aam6084
Peterson SJ, Drummond G, Kim DH et al (2008) L-4F treatment reduces adiposity, increases adiponectin levels, and improves insulin sensitivity in obese mice. J Lipid Res 49(8):1658–1669. https://doi.org/10.1194/jlr.M800046-JLR200
Peterson SJ, Kim DH, Li M et al (2009) The L-4F mimetic peptide prevents insulin resistance through increased levels of HO-1, pAMPK, and pAKT in obese mice. J Lipid Res 50(7):1293–1304. https://doi.org/10.1194/jlr.M800610-JLR200
Vedhachalam C, Liu L, Nickel M et al (2004) Influence of apoA-I structure on the ABCA1-mediated efflux of cellular lipids. J Biol Chem 279(48):49931–49939. https://doi.org/10.1074/jbc.M406924200
Petrlova J, Dalla-Riva J, Morgelin M et al (2014) Secondary structure changes in apoA-I Milano (R173C) are not accompanied by a decrease in protein stability or solubility. PLoS One 9(4):e96150. https://doi.org/10.1371/journal.pone.0096150
Dalla-Riva J, Lagerstedt JO, Petrlova J (2015) Structural and functional analysis of the apolipoproteinA-I A164S variant. PLoS One 10(11):e0143915. https://doi.org/10.1371/journal.pone.0143915
Domingo-Espín J, Nilsson O, Bernfur K, Del Giudice R, Lagerstedt JO (2018) Site-specific glycations of apolipoprotein A-I lead to differentiated functional effects on lipid-binding and on glucose metabolism. Biochim Biophys Acta 1864(9):2822–2834. https://doi.org/10.1016/j.bbadis.2018.05.014
Gaspari T, Welungoda I, Widdop RE, Simpson RW, Dear AE (2013) The GLP-1 receptor agonist liraglutide inhibits progression of vascular disease via effects on atherogenesis, plaque stability and endothelial function in an ApoE(-/-) mouse model. Diab Vasc Dis Res 10(4):353–360. https://doi.org/10.1177/1479164113481817
Shah PK, Nilsson J, Kaul S et al (1998) Effects of recombinant apolipoprotein A-I(Milano) on aortic atherosclerosis in apolipoprotein E-deficient mice. Circulation 97(8):780–785. https://doi.org/10.1161/01.CIR.97.8.780
Bethel MA, Patel RA, Merrill P et al (2018) Cardiovascular outcomes with glucagon-like peptide-1 receptor agonists in patients with type 2 diabetes: a meta-analysis. Lancet Diabetes Endocrinol 6(2):105–113. https://doi.org/10.1016/S2213-8587(17)30412-6
Zinman B, Wanner C, Lachin JM et al (2015) Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N Engl J Med 373(22):2117–2128. https://doi.org/10.1056/NEJMoa1504720
Koska J, Saremi A, Howell S et al (2018) Advanced glycation end products, oxidation products, and incident cardiovascular events in patients with type 2 diabetes. Diabetes Care 41(3):570–576. https://doi.org/10.2337/dc17-1740
Hoang A, Murphy AJ, Coughlan MT et al (2007) Advanced glycation of apolipoprotein A-I impairs its anti-atherogenic properties. Diabetologia 50(8):1770–1779. https://doi.org/10.1007/s00125-007-0718-9
Kashyap SR, Osme A, Ilchenko S et al (2018) Glycation reduces the stability of apoAI and increases HDL dysfunction in diet-controlled type 2 diabetes. J Clin Endocrinol Metab 103(2):388–396. https://doi.org/10.1210/jc.2017-01551
Miragoli M, Ceriotti P, Iafisco M et al (2018) Inhalation of peptide-loaded nanoparticles improves heart failure. Sci Transl Med 10(424). https://doi.org/10.1126/scitranslmed.aan6205