Dissolution rates of phyllosilicates as a function of bacterial metabolic diversity
Tài liệu tham khảo
Acker, 1992, The influence of pH on biotite dissolution and alteration kinetics at low temperature, Geochimica et Cosmochimica Acta, 56, 3073, 10.1016/0016-7037(92)90290-Y
Babu-Khan, 1995, Cloning of a mineral phosphate-solubilizing gene from Pseudomonas cepacia, Applied and Environmental Microbiology, 61, 972, 10.1128/AEM.61.3.972-978.1995
Barker W., Welch S., Chu S. and Banfield J. 1998 Experimental observations of the effects of bacteria on aluminosilicate weathering. American Mineralogist 83, 1551–1563.
Bennett, 1996, Microbial colonization and weathering of silicates in a petroleum-contaminated groundwater, Chemical Geology, 132, 45, 10.1016/S0009-2541(96)00040-X
Bennett, 2001, Silicates, silicate weathering, and microbial ecology, Geomoicrobiology Journal, 18, 3, 10.1080/01490450151079734
Benzerara, 2004, Experimental colonization and weathering of orthopyroxenes by the pleomorphic bacteria Ramlibacter tatahouinensis, Geomicrobiology Journal., 21, 341, 10.1080/01490450490462039
Berthelin, J., 1983. Microbial weathering processes. Microbial Geochemistry, Blackwell London, 223-262.
Beshir, 2007, Use of Bromocresol Green Dyed Poly(Vinyl Butyral) Film for Dosimetric Applications, International journal of polymeric material, 56, 1067, 10.1080/00914030701220065
Boyle, 1974, Chemical weathering of biotite by organic acids, Soil Science, 117, 42, 10.1097/00010694-197401000-00006
Brantley, 2003, Reaction kinetics of primary rock-forming minerals under ambient conditions
Bushnell, 1941, Hydrocarbon utilization by microorganisms, Journal of Bacteriology, 41, 653, 10.1128/JB.41.5.653-673.1941
Cama, 2006, The effects of organic acids on the dissolution of silicate minerals: a case study of oxalate catalysis of kaolinite dissolution, Geochimica et Cosmochimica Acta, 70, 2191, 10.1016/j.gca.2006.01.028
Drever, 1997, The role of organic acids in mineral weathering, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 120, 167, 10.1016/S0927-7757(96)03720-X
Felske, 1998, Quantification of 16S rRNAs in complex bacterial communities by multiple competitive reverse transcription-PCR in temperature gradient gel electrophoresis fingerprints, Applied Environnemental Microbiology, 64, 4581, 10.1128/AEM.64.11.4581-4587.1998
Furrer, 1986, The coordination chemistry of weathering: I. dissolution kinetics of [delta]-Al2O3 and BeO, Geochimica et Cosmochimica Acta, 50, 1847, 10.1016/0016-7037(86)90243-7
Gleeson, 2006, Characterization of bacterial community structure on a weathered pegmatitic granite, Microbial Ecology, 51, 526, 10.1007/s00248-006-9052-x
Golubev, 2006, Effect of pH and organic ligands on the kinetics of smectite dissolution at 25†∞C, Geochimica et Cosmochimica Acta, 70, 4436, 10.1016/j.gca.2006.06.1557
Gottschalk, 1986
Helgeson, 1984, Thermodynamic and kinetic constraints on reaction rates among minerals and aqueous solutions II. Rate constants, effective surface area, and the hydrolysis of feldspar, Geochimica et Cosmochimica Acta, 48, 2405, 10.1016/0016-7037(84)90294-1
Hutchens E., Clipson N. and McDermott F. P. 2008a Mineralogical influence on the structure and the diversity of bacterial communities associated with silicate minerals. Geophysical Research Abstracts 10, EGU2008-A-03930.
Hutchens, 2008, Bacteria, fungi and arche on silicate minerals – a case for selective colonization, Geochimica et Cosmochimica Acta, 72, 404
Jeanroy, E., 1983. Diagnostic des formes du fer dans les pédogénèses tempérées. Évaluation par les réactifs chimique d’extraction et apports de la spectrométrie mossbauer. Doctorat Thesis, Université de Nancy 1.
Kalinowski, 1996, Kinetics of muscovite, phlogopite, and biotite dissolution and alteration at pH 1–4, room temperature, Geochimica et Cosmochimica Acta, 60, 367, 10.1016/0016-7037(95)00411-4
Kalinowski, 2000, Rates of bacteria-promoted solubilization of Fe from minerals: a review of problems and approaches, Chemical Geology, 169, 357, 10.1016/S0009-2541(00)00214-X
Leyval, 1990, Weathering of micas in the rhizosphere of maize, pine and beech seedlings influenced by myccorhizal and bacterial inoculation, Symbiosis, 9, 105
Liermann, 2000, Role of bacterial siderophores in dissolution of hornblende, Geochimica et Cosmochimica Acta, 64, 587, 10.1016/S0016-7037(99)00288-4
Malmström, 1997, Biotite dissolution at 25 C: The pH dependence of dissolution rate and stoichiometry, Geochimica et Cosmochimica Acta, 61, 2779, 10.1016/S0016-7037(97)00093-8
Malmström, 1996, The dissolution of biotite and chlorite at 25°C in the near-neutral pH region, Journal of Contaminant Hydrology, 21, 201, 10.1016/0169-7722(95)00047-X
Murakami, 2003, Biotite dissolution processes and mechanisms in the laboratory and in nature: early stage weathering environment and vermiculization, American Mineralogist, 88, 377, 10.2138/am-2003-2-314
Obernosterer, 1999, Concentrations of low molecular weight carboxylic acids and carbonyl compounds in the Aegean Sea (Eastern Mediterranean) and the turnover of pyruvate, Aquatic Microbial Ecology, 20, 147, 10.3354/ame020147
Oelkers, 2008, An experimental study of the dissolution mechanism and rates of muscovite, Geochimica et Cosmochimica Acta, 72, 4948, 10.1016/j.gca.2008.01.040
Oelkers, 2001, An experimental study of enstatite dissolution rates as a function of pH, temperature, and aqueous Mg and Si concentration, and the mechanism of pyroxene/pyroxenoid dissolution, Geochimica et Cosmochimica Acta, 65, 1219, 10.1016/S0016-7037(00)00564-0
Robert, 1986, Role of biological and biochemical factors in soil mineral weathering, Soil Science Society of America, 12, 453
Rogers, 2004, Mineral stimulation of subsurface microorganisms: release of limiting nutrients from silicates, Chemical Geology, 203, 91, 10.1016/j.chemgeo.2003.09.001
Ruby, 1977, Pyruvate production and excretion by the luminous marine bacteria, Applied Environnmental Microbiology, 34, 164, 10.1128/AEM.34.2.164-169.1977
Santelli, 2001, The effect of Fe-oxidizing bacteria on Fe-silicate mineral dissolution, Chemical Geology, 180, 99, 10.1016/S0009-2541(01)00308-4
Song, 2007, Effect of Bacillus subtilis on granite weathering: a laboratory experiment, CATENA, 70, 275, 10.1016/j.catena.2006.09.003
Sposito, 1989
Stillings, 1995, Feldspar dissolution at 25°C and pH 3: reaction stoichiometry and the effect of cations, Geochimica et Cosmochimica Acta, 59, 1483, 10.1016/0016-7037(95)00057-7
Ullman, 1996, Laboratory evidence for microbially mediated silicate mineral dissolution in nature, Chemical Geology, 132, 11, 10.1016/S0009-2541(96)00036-8
Uroz, 2007, Effect of the Mycorrhizosphere on the genotypic and metabolic diversity of the bacterial communities involved in mineral weathering in a forest soil, Applied and Environmental Microbiology, 73, 3019, 10.1128/AEM.00121-07
Valsami-Jones, 2000, Mineral dissolution by heterotrophic bacteria: principles and methodologies environnmental mineralogy: microbial interactions
Vandevivere, 1994, Enhanced dissolution of silicate minerals by bacteria at near-neutral pH, Microbial Ecology, 27, 241, 10.1007/BF00182408
Van Loosdrecht, 1990, Influences of interfaces on microbial activity, Microbiological Reviews, 54, 75, 10.1128/MMBR.54.1.75-87.1990
Welch, 1993, The effect of organic acids on plagioclase dissolution rates and stoichiometry, Geochimica et Cosmochimica Acta, 57, 2725, 10.1016/0016-7037(93)90386-B
Welch, 1999, The effect of microbial glucose metabolism on bytownite feldspar dissolution rates between 5 and 35°C, Geochimica et Cosmochimica Acta, 63, 3247, 10.1016/S0016-7037(99)00248-3
Welch, 2002, Effect of microorganisms and microbial metabolites on apatite dissolution, Geomicrobiology Journal, 19, 343, 10.1080/01490450290098414
Wu, 2007, Characterization of elemental release during microbe-basalt interactions at T=28°C, Geochimica et Cosmochimica Acta, 71, 2224, 10.1016/j.gca.2007.02.017
Wu, 2008, Characterization of elemental release during microbe–granite interactions at T†=†28†∞C, Geochimica et Cosmochimica Acta, 72, 1076, 10.1016/j.gca.2007.11.025
ZoBell, 1943, The effect of solid surface s upon bacterial activity, Journal of Bacteriology, 46, 39, 10.1128/JB.46.1.39-56.1943