On simulation of nanofluid radiation and natural convection in an enclosure with elliptical cylinders
Tài liệu tham khảo
Ellahi, 2014, Effects of heat and mass transfer on peristaltic flow in a non-uniform rectangular duct, Int. J. Heat Mass Transf., 71, 706, 10.1016/j.ijheatmasstransfer.2013.12.038
Shehzad, 2016, Convective heat transfer of nanofluid in a wavy channel: Buongiorno's mathematical model, J. Mol. Liq., 222, 446, 10.1016/j.molliq.2016.07.052
Mishra, 2017, Analysis of heat and mass transfer with MHD and chemical reaction effects on viscoelastic fluid over a stretching sheet, Indian J. Phys., 1
Sheikholeslami, 2017, Numerical analysis of EHD nanofluid force convective heat transfer considering electric field dependent viscosity, Int. J. Heat Mass Transf., 108, 2558, 10.1016/j.ijheatmasstransfer.2016.10.099
Sheikholeslami, 2017, CVFEM for influence of external magnetic source on Fe3O4–H2O nanofluid behavior in a permeable cavity considering shape effect, Int. J. Heat Mass Transf., 115, 180, 10.1016/j.ijheatmasstransfer.2017.07.045
Sheikholeslami, 2017, Nanofluid heat transfer in a permeable enclosure in presence of variable magnetic field by means of CVFEM, Int. J. Heat Mass Transf., 114, 1169, 10.1016/j.ijheatmasstransfer.2017.07.018
Ellahi, 2017, Three-dimensional flow analysis of Carreau fluid model induced by peristaltic wave in the presence of magnetic field, J. Mol. Liq., 241, 1059, 10.1016/j.molliq.2017.06.082
Hayat, 2016, Comparative study of silver and copper water nanofluids with mixed convection and nonlinear thermal radiation, Int. J. Heat Mass Transf., 102, 723, 10.1016/j.ijheatmasstransfer.2016.06.059
Sheikholeslami, 2017, Melting heat transfer influence on nanofluid flow inside a cavity in existence of magnetic field, Int. J. Heat Mass Transf., 114, 517, 10.1016/j.ijheatmasstransfer.2017.06.092
Sheikholeslami, 2017, Magnetohydrodynamic nanofluid convective flow in a porous enclosure by means of LBM, Int. J. Heat Mass Transf., 113, 796, 10.1016/j.ijheatmasstransfer.2017.05.130
Ellahi, 2016, Entropy generation with nonlinear thermal radiation in MHD boundary layer flow over a permeable shrinking/stretching sheet: numerical solution, J. Nanofluids, 5, 543, 10.1166/jon.2016.1248
Sheikholeslami, 2017, Numerical study for external magnetic source influence on water based nanofluid convective heat transfer, Int. J. Heat Mass Transf., 106, 745, 10.1016/j.ijheatmasstransfer.2016.09.077
Sheikholeslami, 2016, MHD free convection of Al2O3–water nanofluid considering thermal radiation: a numerical study, Int. J. Heat Mass Transf., 96, 513, 10.1016/j.ijheatmasstransfer.2016.01.059
Sheikholeslami, 2016, Electrohydrodynamic free convection heat transfer of a nanofluid in a semi-annulus enclosure with a sinusoidal wall, Numer. Heat Transf. Part A, 69, 781, 10.1080/10407782.2015.1090819
Ellahi, 2016, The shape effects of nanoparticles suspended in HFE-7100 over wedge with entropy generation and mixed convection, Appl. Nanosci., 6, 641, 10.1007/s13204-015-0481-z
Sheikholeslami, 2017, Mesoscopic method for MHD nanofluid flow inside a porous cavity considering various shapes of nanoparticles, Int. J. Heat Mass Transf., 113, 106, 10.1016/j.ijheatmasstransfer.2017.05.054
Sheikholeslami, 2017, Forced convection of nanofluid in presence of constant magnetic field considering shape effects of nanoparticles, Int. J. Heat Mass Transf., 111, 1039, 10.1016/j.ijheatmasstransfer.2017.04.070
Sheikholeslami, 2017, Numerical simulation of nanofluid forced convection heat transfer improvement in existence of magnetic field using Lattice Boltzmann Method, Int. J. Heat Mass Transf., 108, 1870, 10.1016/j.ijheatmasstransfer.2017.01.044
Sheikholeslami, 2015, Simulation of ferrofluid flow for magnetic drug targeting using Lattice Boltzmann method, J. Zeitschrift Fur Naturforschung A, 70, 115, 10.1515/zna-2014-0258
Ellahi, 2016, Aggregation effects on water base nano fluid over permeable wedge in mixed convection, Asia-Pac. J. Chem. Eng., 11, 179, 10.1002/apj.1954
Bhatti, 2016, Endoscope analysis on peristaltic blood flow of sisko fluid with titanium magneto-nanoparticles, Comput. Biol. Med., 78, 29, 10.1016/j.compbiomed.2016.09.007
Bhatti, 2017, Simultaneous effects of coagulation and variable magnetic field on peristaltically induced motion of Jeffrey nanofluid containing gyrotactic microorganism, Microvasc. Res., 110, 32, 10.1016/j.mvr.2016.11.007
Sheikholeslami, 2017, Active method for nanofluid heat transfer enhancement by means of EHD, Int. J. Heat Mass Transf., 109, 115, 10.1016/j.ijheatmasstransfer.2017.01.115
Sheikholeslami, 2017, Nanofluid two phase model analysis in existence of induced magnetic field, Int. J. Heat Mass Transf., 107, 288, 10.1016/j.ijheatmasstransfer.2016.10.130
Sheikholeslami, 2017, Lattice Boltzmann Method simulation of MHD non-Darcy nanofluid free convection, Physica B, 516, 55, 10.1016/j.physb.2017.04.029
Farooq, 2016, MHD stagnation point flow of viscoelastic nanofluid with non-linear radiation effects, J. Mol. Liq., 221, 1097, 10.1016/j.molliq.2016.06.077
Sheikholeslami, 2017, Analysis of flow and heat transfer in water based nanofluid due to magnetic field in a porous enclosure with constant heat flux using CVFEM, Comput. Methods Appl. Mech. Eng., 320, 68, 10.1016/j.cma.2017.03.024
Hayat, 2017, Impact of Marangoni convection in the flow of Carbon-water nanofluid with thermal radiation, Int. J. Heat Mass Transf., 106, 810, 10.1016/j.ijheatmasstransfer.2016.08.115
Hayat, 2016, Water-carbon nanofluid flow with variable heat flux by a thin needle, J. Mol. Liq., 224, 786, 10.1016/j.molliq.2016.10.069
Hayat, 2017, Radiative flow of micropolar nanofluid accounting thermophoresis and Brownian moment, Int. J. Hydrogen Energy, 42, 16821, 10.1016/j.ijhydene.2017.05.006
Tanveer, 2017, Mixed convection peristaltic flow of Eyring-Powell nanofluid in a curved channel with compliant walls, Comput. Biol. Med., 82, 71, 10.1016/j.compbiomed.2017.01.015
Hayat, 2017, Nanofluid flow through a porous space with convective conditions and heterogeneous–homogeneous reactions, J. Taiwan Inst. Chem. Eng., 70, 119, 10.1016/j.jtice.2016.11.002
Waqas, 2017, Numerical simulation for magneto Carreau nanofluid model with thermal radiation: a revised model, Comput. Methods Appl. Mech. Eng., 324, 640, 10.1016/j.cma.2017.06.012
Hayat, 2017, Mixed convection peristaltic motion of copper-water nanomaterial with velocity slip effects in a curved channel, Comput. Methods Programs Biomed., 142, 117, 10.1016/j.cmpb.2017.02.006
Imtiaz, 2016, Flow of magneto nanofluid by a radiative exponentially stretching surface with dissipation effect, Adv. Powder Technol., 27, 2214, 10.1016/j.apt.2016.08.006
Wang, 2016, Investigation on viscosity of Fe3O4 nanofluid under magnetic field, Int. Commun. Heat Mass Transfer, 72, 23, 10.1016/j.icheatmasstransfer.2016.01.013
Sheikholeslami, 2016
Kim, 2008, A numerical study of natural convection in a square enclosure with a circular cylinder at different vertical locations, Int. J. Heat Mass Transf., 51, 1888, 10.1016/j.ijheatmasstransfer.2007.06.033
Khanafer, 2003, Buoyancy-driven heat transfer enhancement in a two-dimensional enclosure utilizing nanofluids, Int. J. Heat Mass Transf., 46, 3639, 10.1016/S0017-9310(03)00156-X
Rudraiah, 1995, Effect of a magnetic field on free convection in a rectangular enclosure, Int. J. Eng. Sci., 33, 1075, 10.1016/0020-7225(94)00120-9
Sheikholeslami, 2017, Numerical simulation of magnetic nanofluid natural convection in porous media, Phys. Lett. A, 381, 494, 10.1016/j.physleta.2016.11.042
Sheikholeslami, 2017, Magnetic field influence on nanofluid thermal radiation in a cavity with tilted elliptic inner cylinder, J. Mol. Liq., 229, 137, 10.1016/j.molliq.2016.12.024
Sheikholeslami, 2017, Influence of Lorentz forces on nanofluid flow in a porous cylinder considering Darcy model, J. Mol. Liq., 225, 903, 10.1016/j.molliq.2016.11.022
Sheikholeslami, 2017, Influence of Coulomb forces on Fe3O4-H2O nanofluid thermal improvement, Int. J. Hydrogen Energ., 42, 821, 10.1016/j.ijhydene.2016.09.185
Sheikholeslami, 2017, Magnetohydrodynamic nanofluid convection in a porous enclosure considering heat flux boundary condition, Int. J. Heat Mass Tran., 106, 1261, 10.1016/j.ijheatmasstransfer.2016.10.107