Experimental Sentinel-2 LAI estimation using parametric, non-parametric and physical retrieval methods – A comparison
Tài liệu tham khảo
Alonso, L., Moreno, J., 2005. Advances and limitations in a parametric geometric correction of CHRIS/PROBA data. In: Proceedings of the 3rd CHRIS/Proba Workshop.
Atzberger, 2004, Object-based retrieval of biophysical canopy variables using artificial neural nets and radiative transfer models, Rem. Sens. Environ., 93, 53, 10.1016/j.rse.2004.06.016
Atzberger, 2012, Spatially constrained inversion of radiative transfer models for improved LAI mapping from future sentinel-2 imagery, Rem. Sens. Environ., 120, 208, 10.1016/j.rse.2011.10.035
Atzberger, 2015, Comparative analysis of different retrieval methods for mapping grassland leaf area index using airborne imaging spectroscopy, Int. J. Appl. Earth Obs. Geoinf.
Bacour, 2006, Neural network estimation of LAI, fAPAR, fCover and LAI×Cab, from top of canopy MERIS reflectance data: principles and validation, Rem. Sens. Environ., 105, 313, 10.1016/j.rse.2006.07.014
Baret, 2008, Estimating canopy characteristics from remote sensing observations. Review of methods and associated problems, 171
Berger, 2012, Esa’s sentinel missions in support of earth system science, Rem. Sens. Environ., 120, 84, 10.1016/j.rse.2011.07.023
Breiman, 1996, Bagging predictors, Mach. Learn., 24, 123, 10.1007/BF00058655
Breiman, 1984
Camps-Valls, G., Gómez-Chova, L., Muñoz-Marí, J., Lázaro-Gredilla, M., Verrelst, J., 6 2013. simpleR: A Simple Educational Matlab Toolbox for Statistical Regression. V2.1. <http://www.uv.es/gcamps/code/simpleR.html>.
Clevers, 2012, Using hyperspectral remote sensing data for retrieving canopy chlorophyll and nitrogen content, IEEE J. Sel. Top. Appl. Earth Obs. Rem. Sens., 5, 574, 10.1109/JSTARS.2011.2176468
Combal, 2002, Improving canopy variables estimation from remote sensing data by exploiting ancillary information. Case study on sugar beet canopies, Agronomie, 22, 205, 10.1051/agro:2002008
Combal, 2003, Retrieval of canopy biophysical variables from bidirectional reflectance using prior information to solve the ill-posed inverse problem, Rem. Sens. Environ., 84, 1, 10.1016/S0034-4257(02)00035-4
Darvishzadeh, 2008, Inversion of a radiative transfer model for estimating vegetation LAI and chlorophyll in a heterogeneous grassland, Rem. Sens. Environ., 112, 2592, 10.1016/j.rse.2007.12.003
Darvishzadeh, 2011, Mapping grassland leaf area index with airborne hyperspectral imagery: a comparison study of statistical approaches and inversion of radiative transfer models, ISPRS J. Photogramm. Rem. Sens., 66, 894, 10.1016/j.isprsjprs.2011.09.013
Darvishzadeh, 2012, Inversion of a radiative transfer model for estimation of rice canopy chlorophyll content using a lookup-table approach, IEEE J. Sel. Top. Appl. Earth Obs. Rem. Sens., 5, 1222, 10.1109/JSTARS.2012.2186118
Delegido, 2011, Evaluation of sentinel-2 red-edge bands for empirical estimation of green LAI and chlorophyll content, Sensors, 11, 7063, 10.3390/s110707063
Delegido, 2013, A red-edge spectral index for remote sensing estimation of green LAI over agroecosystems, Eur. J. Agron., 46, 42, 10.1016/j.eja.2012.12.001
Doktor, 2014, Extraction of plant physiological status from hyperspectral signatures using machine learning methods, Rem. Sens., 6, 12247, 10.3390/rs61212247
Donlon, 2012, The global monitoring for environment and security (GMES) sentinel-3 mission, Rem. Sens. Environ., 120, 37, 10.1016/j.rse.2011.07.024
Dorigo, 2007, A review on reflective remote sensing and data assimilation techniques for enhanced agroecosystem modeling, Int. J. Appl. Earth Obs. Geoinf., 9, 165, 10.1016/j.jag.2006.05.003
Drusch, 2012, Sentinel-2: ESA’s optical high-resolution mission for GMES operational services, Rem. Sens. Environ., 120, 25, 10.1016/j.rse.2011.11.026
Durbha, 2007, Support vector machines regression for retrieval of leaf area index from multiangle imaging spectroradiometer, Rem. Sens. Environ., 107, 348, 10.1016/j.rse.2006.09.031
Feret, 2008, PROSPECT-4 and 5: advances in the leaf optical properties model separating photosynthetic pigments, Rem. Sens. Environ., 112, 3030, 10.1016/j.rse.2008.02.012
Fernández, G., Moreno, J., Gandía, S., Martínez, B., Vuolo, F., Morales, F., 2005. Statistical variability of field measurements of biophysical parameters in SPARC-2003 and SPARC-2004 campaigns. In: Proceedings of the SPARC Workshop.
Friedman, 2000, Additive logistic regression: a statistical view of boosting, Ann. Stat., 28, 337, 10.1214/aos/1016218223
Garrigues, 2008, Validation and intercomparison of global leaf area index products derived from remote sensing data, J. Geophys. Res. G: Biogeosci., 113
GCOS, 2011. Systematic Observation Requirements for Satellite-Based Products for Climate, 2011 Update, Supplemental Details to the Satellite-Based Component of the Implementation Plan for the Global Observing System for Climate in Support of the UNFCCC (2010 update, GCOS-154), pp. 138.
Geladi, 1986, Partial least-squares regression: a tutorial, Anal. Chim. Acta, 185, 1, 10.1016/0003-2670(86)80028-9
Glenn, 2008, Relationship between remotely-sensed vegetation indices, canopy attributes and plant physiological processes: what vegetation indices can and cannot tell us about the landscape, Sensors, 8, 2136, 10.3390/s8042136
Guanter, 2005, A method for the surface reflectance retrieval from PROBA/CHRIS data over land: application to ESA SPARC campaigns, IEEE Trans. Geosci. Rem. Sens., 43, 2908, 10.1109/TGRS.2005.857915
Hagan, 1994, Training feedforward networks with the Marquardt algorithm, IEEE Trans. Neural Netw., 5, 989, 10.1109/72.329697
Hill, 2013, Vegetation index suites as indicators of vegetation state in grassland and savanna: an analysis with simulated sentinel-2 data for a North American transect, Rem. Sens. Environ., 137, 94, 10.1016/j.rse.2013.06.004
Huang, 2006, Extreme learning machine: theory and applications, Neurocomputing, 70, 489, 10.1016/j.neucom.2005.12.126
Jacquemoud, 2009, PROSPECT + SAIL models: a review of use for vegetation characterization, Rem. Sens. Environ., 113, S56, 10.1016/j.rse.2008.01.026
Kimes, 1998, Attributes of neural networks for extracting continuous vegetation variables from optical and radar measurements, Int. J. Rem. Sens., 19, 2639, 10.1080/014311698214433
Knyazikhin, 1998, Influence of small-scale structure on radiative transfer and photosynthesis in vegetation canopies, J. Geophys. Res. D: Atmos., 103, 6133, 10.1029/97JD03380
Laurent, 2014, Bayesian object-based estimation of LAI and chlorophyll from a simulated sentinel-2 top-of-atmosphere radiance image, Rem. Sens. Environ., 140, 318, 10.1016/j.rse.2013.09.005
Lazaro-Gredilla, 2013, Retrieval of biophysical parameters with heteroscedastic gaussian processes, Geosci. Rem. Sens. Lett. IEEE PP, 1
le Maire, 2004, Towards universal broad leaf chlorophyll indices using PROSPECT simulated database and hyperspectral reflectance measurements, Rem. Sens. Environ., 89, 1, 10.1016/j.rse.2003.09.004
Leonenko, 2013, Statistical distances and their applications to biophysical parameter estimation: information measures, M-estimates, and minimum contrast methods, Rem. Sens., 5, 1355, 10.3390/rs5031355
Liang, 2007, Recent developments in estimating land surface biogeophysical variables from optical remote sensing, Prog. Phys. Geogr., 31, 501, 10.1177/0309133307084626
Malenovsky, 2012, Sentinels for science: potential of sentinel-1, -2, and -3 missions for scientific observations of ocean, cryosphere, and land, Rem. Sens. Environ., 120, 91, 10.1016/j.rse.2011.09.026
Meroni, 2004, Inversion of a radiative transfer model with hyperspectral observations for LAI mapping in poplar plantations, Rem. Sens. Environ., 92, 195, 10.1016/j.rse.2004.06.005
Morisette, 2006, Validation of global moderate-resolution LAI products: a framework proposed within the CEOS land product validation subgroup, IEEE Trans. Geosci. Rem. Sens., 44, 1804, 10.1109/TGRS.2006.872529
Moulin, 1998, Combining agricultural crop models and satellite observations: from field to regional scales, Int. J. Rem. Sens., 19, 1021, 10.1080/014311698215586
Myneni, 2002, Global products of vegetation leaf area and fraction absorbed par from year one of modis data, Rem. Sens. Environ., 83, 214, 10.1016/S0034-4257(02)00074-3
Pan, J., Yang, H., He, W., Xu, P., 2013. Retrieve leaf area index from HJ-CCD image based on support vector regression and physical model. In: SPIE Proceedings, vol. 8887, p. 10.
Pozdnyakov, 2005, Operational algorithm for the retrieval of water quality in the Great Lakes, Rem. Sens. Environ., 97, 352, 10.1016/j.rse.2005.04.018
Rasmussen, 2006
Richter, 2009, Experimental assessment of the sentinel-2 band setting for RTM-based LAI retrieval of sugar beet and maize, Can. J. Rem. Sens., 35, 230, 10.5589/m09-010
Richter, 2011, Evaluation of sentinel-2 spectral sampling for radiative transfer model based LAI estimation of wheat, sugar beet, and maize, IEEE J. Sel. Top. Appl. Earth Obs. Rem. Sens., 4, 458, 10.1109/JSTARS.2010.2091492
Rivera Caicedo, 2014, Toward a semiautomatic machine learning retrieval of biophysical parameters, IEEE J. Sel. Top. Appl. Earth Obs. Rem. Sens., 7, 1249, 10.1109/JSTARS.2014.2298752
Rivera Caicedo, 2014, On the semi-automatic retrieval of biophysical parameters based on spectral index optimization, Rem. Sens., 6, 2866
Rivera, 2013, Multiple cost functions and regularization options for improved retrieval of leaf chlorophyll content and LAI through inversion of the PROSAIL model, Rem. Sens., 5, 3280, 10.3390/rs5073280
Schiller, 2005, Improved determination of coastal water constituent concentrations from MERIS data, IEEE Trans. Geosci. Rem. Sens., 43, 1585, 10.1109/TGRS.2005.848410
Schlemmera, 2013, Remote estimation of nitrogen and chlorophyll contents in maize at leaf and canopy levels, Int. J. Appl. Earth Obs. Geoinf., 25, 47, 10.1016/j.jag.2013.04.003
Shannon, 1948, A mathematical theory of communication, Bell Syst. Tech. J., 27, 379, 10.1002/j.1538-7305.1948.tb01338.x
Snee, 1977, Validation of regression models: Methods and examples, Technometrics, 19, 415, 10.1080/00401706.1977.10489581
Suykens, 1999, Least squares support vector machine classifiers, Neural Process. Lett., 9, 293, 10.1023/A:1018628609742
Tian, 2013, Comparison of different hyperspectral vegetation indices for canopy leaf nitrogen concentration estimation in rice, Plant Soil, 1
Tipping, 2001, The relevance vector machine, J. Mach. Learn. Res., 1, 211
Verger, 2008, Performances of neural networks for deriving LAI estimates from existing CYCLOPES and MODIS products, Rem. Sens. Environ., 112, 2789, 10.1016/j.rse.2008.01.006
Verger, 2011, Optimal modalities for radiative transfer-neural network estimation of canopy biophysical characteristics: evaluation over an agricultural area with CHRIS/PROBA observations, Rem. Sens. Environ., 115, 415, 10.1016/j.rse.2010.09.012
Verrelst, 2012, Retrieval of vegetation biophysical parameters using Gaussian process techniques, IEEE Trans. Geosci. Rem. Sens., 50, 1832, 10.1109/TGRS.2011.2168962
Verrelst, 2012, Machine learning regression algorithms for biophysical parameter retrieval: opportunities for sentinel-2 and -3, Rem. Sens. Environ., 118, 127, 10.1016/j.rse.2011.11.002
Verrelst, 2012, Mapping vegetation density in a heterogeneous river floodplain ecosystem using pointable CHRIS/PROBA data, Rem. Sens., 4, 2866, 10.3390/rs4092866
Verrelst, 2013, Gaussian process retrieval of chlorophyll content from imaging spectroscopy data, IEEE J. Sel. Top. Appl. Earth Obs. Rem. Sens., 6, 867, 10.1109/JSTARS.2012.2222356
Verrelst, 2013, Gaussian processes uncertainty estimates in experimental sentinel-2 LAI and leaf chlorophyll content retrieval, ISPRS J. Photogramm. Rem. Sens., 86, 157, 10.1016/j.isprsjprs.2013.09.012
Verrelst, 2014, Optimizing LUT-based RTM inversion for semiautomatic mapping of crop biophysical parameters from sentinel-2 and -3 data: role of cost functions, IEEE Trans. Geosci. Rem. Sens., 52, 257, 10.1109/TGRS.2013.2238242
Verrelst, J., Camps Valls, G., Muñoz Marí, J., Rivera, J., Veroustraete, F., Clevers, J., Moreno, J., 2015. Optical remote sensing and the retrieval of terrestrial vegetation bio-geophysical attributes – a review. ISPRS J. Photogramm. Rem Sens. (this issue).
Vincini, 2014, Empirical estimation of leaf chlorophyll density in winter wheat canopies using sentinel-2 spectral resolution, IEEE Trans. Geosci. Rem. Sens., 52, 3220, 10.1109/TGRS.2013.2271813
Wang, 2012, Estimating leaf nitrogen concentration with three-band vegetation indices in rice and wheat, Field Crops Res., 129, 90, 10.1016/j.fcr.2012.01.014
Weiss, 2000, Investigation of a model inversion technique to estimate canopy biophysical variables from spectral and directional reflectance data, Agronomie, 20, 3, 10.1051/agro:2000105
Weiss, 2007, LAI and fAPAR CYCLOPES global products derived from VEGETATION. Part 2: Validation and comparison with MODIS collection 4 products, Rem. Sens. Environ., 110, 317, 10.1016/j.rse.2007.03.001
Wold, 1987, Principal component analysis, Chemometr. Intell. Lab. Syst., 2, 37, 10.1016/0169-7439(87)80084-9
Yang, 2006, MODIS leaf area index products: from validation to algorithm improvement, IEEE Trans. Geosci. Rem. Sens., 44, 1885, 10.1109/TGRS.2006.871215