Optical solitons and conservation laws with polarization–mode dispersion for coupled Fokas–Lenells equation using group invariance

Chaos, Solitons & Fractals - Tập 120 - Trang 245-249 - 2019
Anupma Bansal1, Abdul H. Kara2, Anjan Biswas3,4,5, Salam Khan3, Qin Zhou6, Seithuti P. Moshokoa5
1Department of Mathematics, D.A.V. College for Women, Ferozepur 152001, India
2School of Mathematics, University of the Witwatersrand, Johannesburg, Wits 2050, South Africa
3Department of Physics, Chemistry and Mathematics, Alabama A&M University, Normal, AL 35762, USA
4Department of Mathematics, King Abdulaziz University, Jeddah 21589, Saudi Arabia
5Department of Mathematics and Statistics, Tshwane University of Technology, Pretoria 0008, South Africa
6School of Electronics and Information Engineering, Wuhan Donghu University, Wuhan 430212, People’s Republic of China

Tài liệu tham khảo

Anco, 2002, Eur J Appl Math, 13, 545, 10.1017/S095679250100465X Anderson, 1995, The cohomology of invariant variational bicomplexes, 3 Arshed, 2018, Optical solitons with polarization–mode dispersion for coupled Fokas–Lenells equation with two forms of integration architecture, Opt Quantum Electron, 50, 10.1007/s11082-018-1563-4 Bansal, 2018, Optical soliton perturbation, group invariants and conservation laws of perturbed Fokas–Lenells equation, Chaos, Solitons Fractals, 114, 275, 10.1016/j.chaos.2018.06.030 Bansal, 2018, Optical soliton perturbation with Radhakrishnan–Kundu–Lakshmanan equation by lie group analysis, Optik, 163, 137, 10.1016/j.ijleo.2018.02.104 Bansal, 2012, Lie point symmetries and similarity solutions of the time–dependent coefficients Calogero Degasperis equation, Phys Scr, 86, 035005, 10.1088/0031-8949/86/03/035005 Biswas, 2018, Optical solitons with differential group delay for coupled Fokas–Lenells equation by extended trial function scheme, Optik, 165, 102, 10.1016/j.ijleo.2018.03.102 Biswas, 2018, Chirp–free bright optical soliton perturbation with Fokas–Lenells equation by traveling wave hypothesis and semi–inverse variational principle, Optik, 170, 431, 10.1016/j.ijleo.2018.06.009 Bluman, 1974 Gupta, 2013, Painlevé analysis, lie symmetries and invariant solutions of potential kadomstev petviashvili equation with time dependent coefficients, Appl Math Comput, 219, 5290, 10.1016/j.amc.2012.11.044 Ibragimov, 1996 Noether, 1918, Nachrichten der akademie der wissenschaften, Göttingen, Mathematisch-Physikalische Klasse, 2, 235 Olver, 1993, Applications of lie groups to differential equations, 10.1007/978-1-4612-4350-2_2 Ovsiannikov, 1982 Stephani, 1989