Cyclodextrin polymers as nanocarriers for sorafenib

Investigational New Drugs - Tập 36 - Trang 370-379 - 2017
Valentina Giglio1, Maurizio Viale2, Vittorio Bertone3, Irena Maric2, Rita Vaccarone3, Graziella Vecchio1
1Dipartimento di Scienze Chimiche, Università degli Studi di Catania, Catania, Italy
2Ospedale Policlinico San Martino, Genova, Italy
3Dipartimento Biologia e Biotecnologie, Lab. Anatomia Comparata e Citologia “L. Spallanzani”, Università di Pavia, Pavia, Italy

Tóm tắt

Polymeric nanoparticles based on cyclodextrins are currently undergoing clinical trials as new promising nanotherapeutics. In light of this interest, we investigated cyclodextrin cross-linked polymers with different lengths as carriers for the poorly water-soluble drug sorafenib. Both polymers significantly enhanced sorafenib solubility, with shorter polymers showing the most effective solubilizing effect. Inclusion complexes between sorafenib and the investigated polymers exhibited an antiproliferative effect in tumor cells similar to that of free sorafenib. Polymer/Sorafenib complexes also showed lower in vivo tissue toxicity than with free sorafenib in all organs. Our results suggest that the inclusion of sorafenib in polymers represents a successful strategy for a new formulation of this drug.

Tài liệu tham khảo

Popielec A, Loftsson T (2017) Effects of cyclodextrins on the chemical stability of drugs. Int J Pharm 531:532–542 Khan AR, Forgo P, Stine KJ, D’Souza VT (1998) Methods for selective modifications of cyclodextrins. Chem Rev 98:1977–1996 Oliveri V, Vecchio G (2016) Cyclodextrins as protective agents of protein aggregation: an overview. Chem Asian J 11:1648–1657 Heidel JD, Schluep T (2012) Cyclodextrin-containing polymers: versatile platforms of drug delivery materials. J Drug Deliv ID 262731:17 Arima H, Hayashi Y, Higashi T, Motoyama K (2015) Recent advances in cyclodextrin delivery techniques. Expert Opin Drug Deliv 12:1425–1441 Giglio V, Oliveri V, Viale M, Gangemi R, Natile G, Intini FP, Vecchio G (2015) Folate–cyclodextrin conjugates as carriers of the platinum(IV) complex LA-12. ChemPlusChem 80:536–543 Bellia F, La Mendola D, Pedone C, Rizzarelli E, Saviano M, Vecchio G (2009) Selectively functionalized cyclodextrins and their metal complexes. Chem Soc Rev 38:2756–2781 Lakkakula JR, Maçedo Krause RW (2014) A vision for cyclodextrin nanoparticles in drug delivery systems and pharmaceutical applications. Nanomedicine 9:877–894 Van de Manakker F, Vermonden T, Van Nostrum CF, Hennink WE (2009) Cyclodextrin-based polymeric materials: synthesis, properties, and pharmaceutical/biomedical applications. Biomacromolecules 10:3157–3175 Vulic K, Shoichet MS (2014) Affinity-based drug delivery systems for tissue repair and regeneration. Biomacromolecules 15:3867–3880 Jones RK, Caldwell JE, Brull SJ, Soto RG (2008) Reversal of profound rocuronium-induced blockade with sugammadex: a randomized comparison with neostigmine. Anesthesiology 109:816–824 Gidwani B, Vyas AA (2015) Comprehensive review on cyclodextrin-based carriers for delivery of chemotherapeutic cytotoxic anticancer drugs. BioMed Res Int 2015. https://doi.org/10.1155/2015/198268 Adeoye O, Cabral-Marques H (2017) Cyclodextrin nanosystems in oral drug delivery: a mini review. Int J Pharm doi: https://doi.org/10.1016/j.ijpharm.2017.04.050 Avnesh S, Thakor MD, Sanjiv S, Gambhir MD (2013) Nanooncology: the future of cancer diagnosis and therapy. Cancer J Clin 63:395–418 Fülöp Z, Kurkov SV, Nielsen TT, Larsen KL, Loftsson T (2012) Self-assembly of cyclodextrins: formation of cyclodextrin polymer-based nanoparticles. J Drug Deliv Sci Technol 22:215–222 Oliveri V, Bellia F, Vecchio G (2017) Cyclodextrin nanoparticles bearing 8-hydroxyquinoline ligands as multifunctional biomaterials. Chem Eur J 23:442–4449 Swaminathan S, Cavalli R, Trotta F (2016) Cyclodextrin-based nanosponges: a versatile platform for cancer nanotherapeutics development. Wiley Interdiscip Rev Nanomed Nanobiotechnol 8:579–601 Zhu W, Li Y, Liu L, Chen Y, Wang C, Xi F (2010) Supramolecular hydrogels from cisplatin-loaded block copolymer nanoparticles and α-Cyclodextrins with a stepwise delivery property. Biomacromolecules 11:3086–3092 Oliveri V, Bellia F, Viale M, Maric I, Vecchio G (2017) Linear polymers of β and γ cyclodextrins with a polyglutamic acid backbone as carriers for doxorubicin. Carbohydr Polym. 177:355–360 Davis ME, Zuckerman JE, Choi CH, Seligson D, Tolcher A, Alabi CA, Yen Y, Heidel JD, Ribas A (2010) Evidence of RNAi in humans from systemically administered siRNA via targeted nanoparticles. Nature 464:1067–1070 Clark AJ, Wiley DT, Zuckerman JE, Webster P, Chao J, Lin J, Yen Y, Davis ME (2016) CRLX101 nanoparticles localize in human tumors and not in adjacent, nonneoplastic tissue after intravenous dosing. PNAS 113:3850–3854 Hu C-MJ, Fang RH, Luk BT, Zhang L (2014) Polymeric nanotherapeutics: clinical development and advances in stealth functionalization strategies. Nano 6:65–75 Gidwani B, Vyas A (2014) Synthesis, characterization and application of epichlorohydrin-β-cyclodextrin polymer. Colloids Surf B 114:130–137 Giglio V, Sgarlata C, Vecchio G (2015) Novel amino-cyclodextrin cross-linked oligomer as efficient carrier for anionic drugs: a spectroscopic and nanocalorimetric investigation. RSC Adv 5:16664–16671 Kanwar JR, Long BM, Kanwar RK (2011) The use of cyclodextrins nanoparticles for oral delivery. Curr Med Chem 18:2079–2085 Anand R, Malanga M, Manet I, Manoli F, Tuza K, Aykac A, Ladaviere C, Fenyvesi E, Vargas-Berenguel A, Gref R, Monti S (2013) Citric acid-γ-cyclodextrin crosslinked oligomers as carriers for doxorubicin delivery. Photochem Photobiol Sci 12:1841–1854 Folch-Cano C, Yazdani-Pedram M, Olea-Azar C (2014) Inclusion and functionalization of polymers with cyclodextrins: current applications and future prospects. Molecules 19:14066–14079 Sherje AP, Dravyakar BR, Kadam D, Jadhav M (2017) Cyclodextrin-based nanosponges: a critical review. Carbohydr Polym 173:37–49 Longmire M, Choyke PL, Kobayashi H (2008) Clearance properties of nano-sized particles and molecules as imaging agents: considerations and caveats. Nanomedicine (London) 3:703–717 Huillard O, Boissier E, Blanchet B, Thomas-Schoemann A, Cessot A, Boudou-Rouquette P, Durand JP, Coriat R, Giroux J, Alexandre J, Vidal M, Goldwasser F (2014) Drug safety evaluation of sorafenib for treatment of solid tumors: consequences for the risk assessment and management of cancer patients. Expert Opin Drug Saf 13:663–673 European Medicines Agency. Sorafenib—EPAR Scientific Discussion (2010) Almeida e Sousa L, Reutzel-Edens SM, Stephenson GA, Taylor LS (2015) Assessment of the amorphous “solubility” of a Group of Diverse Drugs Using new Experimental and Theoretical Approaches. Mol. Pharmaceutics 12:484–−495 Liu C, Chen Z, Chen Y, Lu J, Li Y, Wang S, Wu G, Qian F (2016) Improving oral bioavailability of Sorafenib by optimizing the “spring” and “parachute” based on molecular interaction mechanisms. Mol Pharm 13:599–608 Bondì ML, Scala A, Sortino G, Amore E, Botto C, Azzolina A, Balasus D, Cervello M, Mazzaglia A (2015) Nanoassemblies based on supramolecular complexes of nonionic amphiphilic cyclodextrin and sorafenib as effective weapons to kill human HCC cells. Biomacromolecules 16:3784–3791 Zhang N, Zhang B, Gong X, Wang T, Liu Y, Yang S (2016) In vivo biodistribution, biocompatibility, and efficacy of sorafenib-loaded lipid-based nanosuspensions evaluated experimentally in cancer. Int J Nanomedicine 11:2329–2343 Blanchet B, Billemont B, Barete S, Garrigue H, Cabanes L, Coriat R, Francès C, Knebelmann B, Goldwasser F (2010) Toxicity of sorafenib: clinical and molecular aspects. Expert Opin Drug Saf 9:275–287 Yamaguchi T, Seki T, Miyasaka C, Inokuchi R, Kawamura R, Sakaguchi Y, Murata M, Matsuzaki K, Nakano Y, Uemura Y, Okazaki K (2015) Interstitial pneumonia induced by sorafenib in a patient with hepatocellular carcinoma: an autopsy case report. Oncol Lett 9:1633–1636 Van Hootegem A, Verslype C, Van Steenbergen W (2011) Sorafenib-induced liver failure: a case report and review of the Literature. Case Reports in Hepatology. http://dx.doi.org/10.1155/2011/941395 Guo Y, Zhong T, Duan X-C, Zhang S, Yao X, Yin Y-F, Huang D, Ren W, Zhang Q, Zhang X (2017) Improving anti-tumor activity of sorafenib tosylate by lipid- and polymer-coated nanomatrix. Drug Deliv 24:270–277 Giglio V, Viale M, Monticone M, Aura AM, Spoto G, Natile G, Intini FP, Vecchio G (2016) Cyclodextrin polymers as carriers for the platinum-based anticancer agent LA-12. RSC Adv 6:12461–12466 Loftsson T, Hreinsdottir D, Masson M (2005) Evaluation of cyclodextrin solubilization of drugs. Int J Pharm 302:18–28 Oliveri V, Puglisi A, Viale M, Aiello C, Vecchio G, Clarke J, Milton J, Spencer J (2013) New cyclodextrin-bearing 8-hydroxyquinoline ligands as multifunctional molecules. Chem Eur J 19:13946–13955 Mariggiò MA, Cafaggi S, Ottone M, Parodi B, Vannozzi MO, Parodi A, Mandys V, Viale M (2004) Inhibition of cell growth: induction of apoptosis and mechanism of action of the novel platinum compound cis-diaminechloro-[2-(diethylamino) ethyl 4- amino-benzoate, N4]-chloride platinum (II) monohydrochloride monohydrate. Invest New Drugs 22:3–16 Layre AM, Gosselet NM, Renard E, Sebille B, Amiel C (2003) Comparison of the complexation of cosmetic and pharmaceutical compounds with β-cyclodextrin, 2-hydroxypropyl-β-cyclodextrin and water-soluble-β-cyclodextrin-co-epichlorohydrin polymers. J. Inclusion Phenomen Macrocyclic Chem 43:311–317 Martin R, Sánchez I, Cao R, Rieumont J (2006) Solubility and kinetic release studies of naproxen and ibuprofen in soluble Epichlorohydrin-β-cyclodextrin polymer. Supramol Chem 18:627–631 Fülöp Z, Nielsen TT, Larsen KL, Loftsson T (2013) Dextran-based cyclodextrin polymers: their solubilizing effect and self-association. Carbohydr Polym 97:635–642 Hashemi F, Tamaddon AM, Yousefi GH, Farvadi F (2012) Effect of pH on Solubilisation of Practically Insoluble Sorafenib by Classic and Stealth Polyamidoamine (PAMAM) Dendrimers and β–cyclodextrin. Proc NAP 1:02NNBM06 Haxton KJ, Burt HM (2009) Polymeric drug delivery of platinum based anticancer agents. J Pharm Sci 98:2299–2316 Viale M, Rossi M, Russo E, Cilli M, Aprile A, Profumo A, Santi P, Fenoglio C, Cafaggi S, Rocco M (2015) Fibrin gels loaded with cisplatin and cisplatin-hyaluronate complexes tested in a subcutaneous human melanoma model. Invest New Drugs 33:1151–1161