Isometric embeddings of spherical spaceforms with cyclic fundamental groups

manuscripta mathematica - Tập 64 - Trang 127-133 - 1989
Franz J. Pedit1
1Department of Mathematics, Emory University, Atlanta, USA

Tóm tắt

We construct a sequence of isometric embeddings of spherical spaceforms with cylcic fundamental groups. The standard sphere and Veronese embedding are the first two elements in this sequence. The embeddings are orbits under the unitary group and consequently the lengths of geometric quantities (like the 2nd fundamental form or the mean curvature vector) are constant.

Tài liệu tham khảo

BERGER, E., BRYANT, R., GRIFFITHS, Ph.The Gauss equation and rigidity of isometric embeddings. Duke Math. J.50, No. 3,804–892 (1983) BLANUSA, D.Embeddings of some 3-dimensional euclidan spatial forms in spaces of constant curvature. Akad. Znan. Umjet.331, 237–262 (1965) HENKE, W.Isometrische Immersion des H n in R 4n−3. Manuscr. Math.34,265–278 (1981) -.Isometrische Einbettung des n-dimensionalen hyperbolischen Raumes. Tagungsbericht 42, Oberwolfach (1985) NASH, J.The embedding problem for riemannian manifolds. Ann. of Math.63,20–63 (1956) PEDIT, F.J.Affine embeddings of flat compact manifolds I. Ann. Global Anal. Geom.5, No. 3, 199–215 (1987) -. Affine embeddings of flat compact manifolds II. In preparation STEINER, S.Über die riemannische Einbettungsgeometrie der Veronese Mannigfaltigkeiten. Manuscr. Math.20, 277–300 (1977) STEINER, S., TEUFEL, E., VILMS, J.On the Gauss equation of an isometric immersion. Duke Math. J.51, No. 2,421–430 WOLF, J.A.Spaces of constant curvature. Publish or Perish, Inc. Boston. 1974