Free vibration analysis of thin plates by using a NURBS-based isogeometric approach

Finite Elements in Analysis and Design - Tập 61 - Trang 23-34 - 2012
S. Shojaee1, E. Izadpanah1, N. Valizadeh1, J. Kiendl2
1Department of Civil Engineering, Shahid Bahonar University, Kerman, Iran
2Lehrstuhl für Statik, Technische Universität München, Arcisstr. 21, München 80333, Germany

Tài liệu tham khảo

Hughes, 2005, Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement, Comput. Methods Appl. Mech. Eng., 194, 4135, 10.1016/j.cma.2004.10.008 Bazilevs, 2008, NURBS-based isogeometric analysis for the computation of flows about rotating components, Comput. Struct., 43, 143 Bazilevs, 2006, Isogeometric fluid-structure interaction analysis with applications to arterial blood flow, Comput. Struct., 38, 310 Bazilevs, 2008, Isogeometric fluid-structure interaction: theory, algorithms and computations, Comput. Struct., 43, 3 Wall, 2008, Full analytical sensitivities in NURBS based isogeometric shape optimization, Comput. Methods Appl. Mech. Eng., 197, 2976, 10.1016/j.cma.2008.01.025 Qian, 2010, Isogeometric structural shape optimization, Comput. Methods Appl. Mech. Eng., 199, 2059, 10.1016/j.cma.2010.03.005 Shojaee, 2011, Isogeometric structural shape optimization using particle swarm algorithm, Int. J. Optim. Civil Eng., 4, 633 Benson, 2010, Isogeometric shell analysis: the Reissner–Mindlin shell, Comput. Methods Appl. Mech. Eng., 199, 276, 10.1016/j.cma.2009.05.011 Benson, 2011, A large deformation, rotation-free, isogeometric shell, Comput. Methods Appl. Mech. Eng., 200, 1367, 10.1016/j.cma.2010.12.003 Kiendl, 2009, Isogeometric shell analysis with Kirchhoff–Love elements, Comput. Methods Appl. Mech. Eng., 198, 3902, 10.1016/j.cma.2009.08.013 Uhm, 2009, T-spline finite element method for the analysis of shell structures, Int. J. Numer. Methods Eng., 80, 507, 10.1002/nme.2648 Verhoosel, 2011, An isogeometric analysis approach to gradient damage models, Int. J. Numer. Methods Eng., 86, 115, 10.1002/nme.3150 Cottrell, 2006, Isogeometric analysis of structural vibrations, Comput. Methods Appl. Mech. Eng., 195, 5257, 10.1016/j.cma.2005.09.027 Piegl, 1997, 10.1007/978-3-642-59223-2 Roh, 2004, The application of geometrically exact shell elements to B-spline surfaces, Comput. Methods Appl. Mech. Eng., 193, 2261, 10.1016/j.cma.2004.01.019 Liu, 2003 Belytschko, 1994, Element free Galerkin method, Int. J Numer. Methods Eng., 37, 229, 10.1002/nme.1620370205 Zhu, 1998, A modified collocation method and a penalty formulation for enforcing the essential boundary conditions in the element free Galerkin method, Comput. Struct., 21, 211 Nitsche, 1971, Über ein variation zur lösung von Dirichlet-problemen bei Verwendung von teilräumen die keinen randbedingungen unterworfen sind, Abh. Math. Se. Univ. Hamburg, 36, 9, 10.1007/BF02995904 Fernández-Méndez, 2004, Imposing essential boundary conditions in mesh-free methods, Comput. Methods Appl. Mech. Eng., 193, 1257, 10.1016/j.cma.2003.12.019 Liu, 2006, A mesh-free Hermite-type radial point interpolation method for Kirchhoff plate problems, Int. J. Numer. Methods Eng., 66, 1153, 10.1002/nme.1587 Cui, 2011, A smoothed Hermite radial point interpolation method for thin plate analysis, Arch. Appl. Mech., 81, 1, 10.1007/s00419-009-0392-0 Kiendl, 2010, The bending strip method for isogeometric analysis of Kirchhoff–Love shell structures comprised of multiple patches, Comput. Methods Appl. Mech. Eng., 199, 2403, 10.1016/j.cma.2010.03.029 Liu, 2001, A mesh-free method for static and free vibration analyses of thin plates of complicated shape, J. Sound Vib., 241, 839, 10.1006/jsvi.2000.3330 F. Abbassian, D.J. Dawswell, N.C. Knowles, Free vibration benchmarks. Atkins Eng. Sci. 1987. Robert, 1979 Bui, 2011, A moving Kriging interpolation-based meshfree method for free vibration analysis of Kirchhoff plates, Comput. Struct., 89, 380, 10.1016/j.compstruc.2010.11.006 Cheung, 1988, Free vibration and static analysis of general plate by spline finite strip, Comput. Mech., 3, 187, 10.1007/BF00297445 Hinton, 1988 Liew, 2004, Free vibration and buckling analyses of shear-deformable plates based on FSDT meshfree method, J. Sound Vib., 276, 997, 10.1016/j.jsv.2003.08.026 Woo, 2003, Free vibration of skew Mindlin plates by p-version of F.E.M, J. Sound Vib., 268, 637, 10.1016/S0022-460X(02)01536-5 Liew, 1993, Vibration of thick skew plates based on Mindlin shear deformation plate theory, J. Sound Vib., 168, 39, 10.1006/jsvi.1993.1361 Raju, 1980, Natural frequencies and modes of rhombic Mindlin plates, Earthquake Eng. Struct. Dyn., 8, 55, 10.1002/eqe.4290080106 Huang, 1995, Accurate vibration analysis of simply supported rhombic plates by considering stress singularities, J. Vib. Acoust., 117, 245, 10.1115/1.2874440 Cui, 2011, A thin plate formulation without rotation DOFs based on the radial point interpolation method and triangular cells, Int. J. Numer. Methods Eng., 85, 958, 10.1002/nme.3000