Free vibration analysis of thin plates by using a NURBS-based isogeometric approach
Tài liệu tham khảo
Hughes, 2005, Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement, Comput. Methods Appl. Mech. Eng., 194, 4135, 10.1016/j.cma.2004.10.008
Bazilevs, 2008, NURBS-based isogeometric analysis for the computation of flows about rotating components, Comput. Struct., 43, 143
Bazilevs, 2006, Isogeometric fluid-structure interaction analysis with applications to arterial blood flow, Comput. Struct., 38, 310
Bazilevs, 2008, Isogeometric fluid-structure interaction: theory, algorithms and computations, Comput. Struct., 43, 3
Wall, 2008, Full analytical sensitivities in NURBS based isogeometric shape optimization, Comput. Methods Appl. Mech. Eng., 197, 2976, 10.1016/j.cma.2008.01.025
Qian, 2010, Isogeometric structural shape optimization, Comput. Methods Appl. Mech. Eng., 199, 2059, 10.1016/j.cma.2010.03.005
Shojaee, 2011, Isogeometric structural shape optimization using particle swarm algorithm, Int. J. Optim. Civil Eng., 4, 633
Benson, 2010, Isogeometric shell analysis: the Reissner–Mindlin shell, Comput. Methods Appl. Mech. Eng., 199, 276, 10.1016/j.cma.2009.05.011
Benson, 2011, A large deformation, rotation-free, isogeometric shell, Comput. Methods Appl. Mech. Eng., 200, 1367, 10.1016/j.cma.2010.12.003
Kiendl, 2009, Isogeometric shell analysis with Kirchhoff–Love elements, Comput. Methods Appl. Mech. Eng., 198, 3902, 10.1016/j.cma.2009.08.013
Uhm, 2009, T-spline finite element method for the analysis of shell structures, Int. J. Numer. Methods Eng., 80, 507, 10.1002/nme.2648
Verhoosel, 2011, An isogeometric analysis approach to gradient damage models, Int. J. Numer. Methods Eng., 86, 115, 10.1002/nme.3150
Cottrell, 2006, Isogeometric analysis of structural vibrations, Comput. Methods Appl. Mech. Eng., 195, 5257, 10.1016/j.cma.2005.09.027
Piegl, 1997, 10.1007/978-3-642-59223-2
Roh, 2004, The application of geometrically exact shell elements to B-spline surfaces, Comput. Methods Appl. Mech. Eng., 193, 2261, 10.1016/j.cma.2004.01.019
Liu, 2003
Belytschko, 1994, Element free Galerkin method, Int. J Numer. Methods Eng., 37, 229, 10.1002/nme.1620370205
Zhu, 1998, A modified collocation method and a penalty formulation for enforcing the essential boundary conditions in the element free Galerkin method, Comput. Struct., 21, 211
Nitsche, 1971, Über ein variation zur lösung von Dirichlet-problemen bei Verwendung von teilräumen die keinen randbedingungen unterworfen sind, Abh. Math. Se. Univ. Hamburg, 36, 9, 10.1007/BF02995904
Fernández-Méndez, 2004, Imposing essential boundary conditions in mesh-free methods, Comput. Methods Appl. Mech. Eng., 193, 1257, 10.1016/j.cma.2003.12.019
Liu, 2006, A mesh-free Hermite-type radial point interpolation method for Kirchhoff plate problems, Int. J. Numer. Methods Eng., 66, 1153, 10.1002/nme.1587
Cui, 2011, A smoothed Hermite radial point interpolation method for thin plate analysis, Arch. Appl. Mech., 81, 1, 10.1007/s00419-009-0392-0
Kiendl, 2010, The bending strip method for isogeometric analysis of Kirchhoff–Love shell structures comprised of multiple patches, Comput. Methods Appl. Mech. Eng., 199, 2403, 10.1016/j.cma.2010.03.029
Liu, 2001, A mesh-free method for static and free vibration analyses of thin plates of complicated shape, J. Sound Vib., 241, 839, 10.1006/jsvi.2000.3330
F. Abbassian, D.J. Dawswell, N.C. Knowles, Free vibration benchmarks. Atkins Eng. Sci. 1987.
Robert, 1979
Bui, 2011, A moving Kriging interpolation-based meshfree method for free vibration analysis of Kirchhoff plates, Comput. Struct., 89, 380, 10.1016/j.compstruc.2010.11.006
Cheung, 1988, Free vibration and static analysis of general plate by spline finite strip, Comput. Mech., 3, 187, 10.1007/BF00297445
Hinton, 1988
Liew, 2004, Free vibration and buckling analyses of shear-deformable plates based on FSDT meshfree method, J. Sound Vib., 276, 997, 10.1016/j.jsv.2003.08.026
Woo, 2003, Free vibration of skew Mindlin plates by p-version of F.E.M, J. Sound Vib., 268, 637, 10.1016/S0022-460X(02)01536-5
Liew, 1993, Vibration of thick skew plates based on Mindlin shear deformation plate theory, J. Sound Vib., 168, 39, 10.1006/jsvi.1993.1361
Raju, 1980, Natural frequencies and modes of rhombic Mindlin plates, Earthquake Eng. Struct. Dyn., 8, 55, 10.1002/eqe.4290080106
Huang, 1995, Accurate vibration analysis of simply supported rhombic plates by considering stress singularities, J. Vib. Acoust., 117, 245, 10.1115/1.2874440
Cui, 2011, A thin plate formulation without rotation DOFs based on the radial point interpolation method and triangular cells, Int. J. Numer. Methods Eng., 85, 958, 10.1002/nme.3000