Improvement of lichenysin production in Bacillus licheniformis by replacement of native promoter of lichenysin biosynthesis operon and medium optimization

Springer Science and Business Media LLC - Tập 98 - Trang 8895-8903 - 2014
Yimin Qiu1, Fang Xiao1, Xuetuan Wei2, Zhiyou Wen2,3, Shouwen Chen1,4
1State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
2College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
3Department of Food Science and Human Nutrition, Iowa State University, Ames, USA
4Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, college of life sciences, Hubei University, Wuhan, China

Tóm tắt

Lichenysin is a biodegradable surfactant with huge potential for recovering crude oil from the oil reservoir. The current production of lichenysin is made through fermentation from wild strain of Bacillus licheniformis, which is limited by low yield. The aim of this work was to improve lichenysin-producing capability of a wide strain B. licheniformis WX-02. Lichenysin produced from WX-02 was first extracted, purified, and identified. Through the substitution of the promoter of lichenysin biosynthesis operon, the mutants B. licheniformis WX02-P43lch, WX02-Pxyllch, and WX02-Psrflch were constructed with the constitutive promoter (P43), the xylose-inducible promoter (P xyl ), and the surfactin operon promoter (P srf ), respectively. A consistent change trend was observed between lichenysin production and lchAA gene transcription, confirming the strength of the promoters as an important factor for lichenysin synthesis. Among the three mutants, WX02-Psrflch produced the highest lichenysin yield. The production by the mutant WX02-Psrflch was further improved with the optimization of the major medium components including glucose, NH4NO3, and Na2HPO4/KH2PO4. Under 30 g/L glucose, 5 g/L NH4NO3, and 80 mM/60 mM Na2HPO4/KH2PO4, the strain WX02-Psrflch produced 2,149 mg/L lichenysin, a 16.8-fold improvement compared to that of wild strain WX-02.

Tài liệu tham khảo

Banat IM, Franzetti A, Gandolfi I, Bestetti G, Martinotti MG, Fracchia L, Smyth TJ, Marchant R (2010) Microbial biosurfactants production, applications and future potential. Appl Microbiol Biot 87(2):427–44. doi:10.1007/s00253-010-2589-0 Duan YX, Chen T, Chen X, Zhao XM (2010) Overexpression of glucose-6-phosphate dehydrogenase enhances riboflavin production in Bacillus subtilis. Appl Microbiol Biot 85(6):1907–14. doi:10.1007/s00253-009-2247-6 Duitman EH, Wyczawski D, Boven LG, Venema G, Kuipers OP, Hamoen LW (2007) Novel methods for genetic transformation of natural Bacillus subtilis isolates used to study the regulation of the mycosubtilin and surfactin synthetases. Appl Environ Microb 73(11):3490–3496 Fickers P, Guez J-S, Damblon C, Leclère V, Béchet M, Jacques P, Joris B (2009) High-level biosynthesis of the anteiso-C17 isoform of the antibiotic mycosubtilin in Bacillus subtilis and characterization of its candidacidal activity. Appl Environ Microb 75(13):4636–4640 Gat O, Inbar I, Aloni-Grinstein R, Zahavy E, Kronman C, Mendelson I, Cohen S, Velan B, Shafferman A (2003) Use of a promoter trap system in Bacillus anthracis and Bacillus subtilis for the development of recombinant protective antigen-based vaccines. Infect Immun 71(2):801–813. doi:10.1128/iai.71.2.801-813.2003 Grangemard I, Wallach J, Maget-Dana R, Peypoux F (2001) Lichenysin. Appl Biochem Biotech 90(3):199–210 Jacques P (2011) Surfactin and other lipopeptides from Bacillus spp. In: Soberón-Chávez G (ed) Biosurfactants. Microbiology Monographs, vol 20. Springer Berlin Heidelberg, pp 57-91 Joshi S, Yadav S, Desai AJ (2007) Statistical optimization of medium components for the production of biosurfactant by Bacillus licheniformis K51. J Microbiol Biotechn 17(2):313–319 Joshi S, Yadav S, Desai AJ (2008) Application of response-surface methodology to evaluate the optimum medium components for the enhanced production of lichenysin by Bacillus licheniformis R2. Biochem Eng J 41(2):122–127 Jung J, Yu KO, Ramzi AB, Choe SH, Kim SW, Han SO (2012) Improvement of surfactin production in Bacillus subtilis using synthetic wastewater by overexpression of specific extracellular signaling peptides, comX and phrC. Biotechnol Bioeng 109(9):2349–56. doi:10.1002/bit.24524 Kim JH, Hwang BY, Roh J, Lee JK, Kim K, Wong SL, Yun H, Lee SG, Kim BG (2008) Comparison of P aprE , P amyE , and P P43 promoter strength for β-galactosidase and staphylokinase expression in Bacillus subtilis. Biotechnol Bioproc E 13(3):313–318 Kracht M, Rokos H, Ozel M, Kowall M, Pauli G, Vater J (1999) Antiviral and hemolytic activities of surfactin isoforms and their methyl ester derivatives. J Antibiot 52(7):613–619 Li Y-M, Haddad NIA, Yang S-Z, Mu B-Z (2008) Variants of lipopeptides produced by Bacillus licheniformis HSN221 in different medium components evaluated by a rapid method ESI-MS. Int J Pept Res Ther 14(3):229–235. doi:10.1007/s10989-008-9137-0 Lin S-C, Lin K-G, Lo C-C, Lin Y-M (1998) Enhanced biosurfactant production by a Bacillus licheniformis mutant. Enzyme Microb Tech 23(3–4):267-273 doi:http://dx.doi.org/10.1016/S0141-0229(98)00049-0 Liu JF, Yang J, Yang SZ, Ye RQ, Mu BZ (2012a) Effects of different amino acids in culture media on surfactin variants produced by Bacillus subtilis TD7. Appl Biochem Biotech 166(8):2091–100. doi:10.1007/s12010-012-9636-5 Liu X, Ren B, Gao H, Liu M, Dai H, Song F, Yu Z, Wang S, Hu J, Kokare CR (2012b) Optimization for the production of surfactin with a new synergistic antifungal activity. PLoS One 7(5):e34430 Madslien EH, Rønning HT, Lindbäck T, Hassel B, Andersson MA, Granum PE (2013) Lichenysin is produced by most Bacillus licheniformis strains. J Appl Microbiol 115(4):1068–1080. doi:10.1111/jam.12299 Masuda A, Dohmae N (2012) Amino acid analysis of sub-picomolar amounts of proteins by precolumn fluorescence derivatization with 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate. Biosci Trends 5(6):231–238. doi:10.5582/bst.2011.v5.6.231 Mikkola R, Kolari M, Andersson MA, Helin J, Salkinoja-Salonen MS (2000) Toxic lactonic lipopeptide from food poisoning isolates of Bacillus licheniformis. Eur J Biochem 267(13):4068–4074 Nerurkar AS (2010) Structural and molecular characteristics of lichenysin and its relationship with surface activity. Adv Exp Med Biol 672:304–315 Qi G, Kang Y, Li L, Xiao A, Zhang S, Wen Z, Xu D, Chen S (2014) Deletion of meso-2, 3-butanediol dehydrogenase gene budC for enhanced D-2, 3-butanediol production in Bacillus licheniformis. Biotechnol Biofuels 7(1):16 Radha S, Gunasekaran P (2008) Sustained expression of keratinase gene under P xylA and P amyL promoters in the recombinant Bacillus megaterium MS941. Bioresource Technol 99(13):5528–5537 Rangarajan V, Dhanarajan G, Kumar R, Sen R, Mandal M (2012) Time-dependent dosing of Fe2+ for improved lipopeptide production by marine Bacillus megaterium. J Chem Technol Biot 87(12):1661–1669. doi:10.1002/jctb.3814 Razafindralambo H, Popineau Y, Deleu M, Hbid C, Jacques P, Thonart P, Paquot M (1998) Foaming properties of lipopeptides produced by Bacillus subtilis: effect of lipid and peptide structural attributes. J Agr Food Chem 46(3):911–916 Satpute SK, Bhuyan SS, Pardesi KR, Mujumdar SS, Dhakephalkar PK, Shete AM, Chopade BA (2010) Molecular genetics of biosurfactant synthesis in microorganisms. Adv Exp Med Biol 672:14–41 Tao X, Liu Y, Wang Y, Qiu Y, Lin J, Zhao A, Su M, Jia W (2008) GC-MS with ethyl chloroformate derivatization for comprehensive analysis of metabolites in serum and its application to human uremia. Anal Bioanal Chem 391(8):2881–2889 Terpe K (2006) Overview of bacterial expression systems for heterologous protein production: from molecular and biochemical fundamentals to commercial systems. Appl Microbiol Biot 72(2):211–22. doi:10.1007/s00253-006-0465-8 Wei X, Ji Z, Chen S (2010) Isolation of halotolerant Bacillus licheniformis WX-02 and regulatory effects of sodium chloride on yield and molecular sizes of poly-γ-glutamic acid. Appl Biochem Biotech 160(5):1332–1340 Wei X, Tian G, Ji Z, Chen S (2014) A new strategy for enhancement of poly-γ-glutamic acid production by multiple physicochemical stresses in Bacillus licheniformis. J Chem Technol Biot. doi:10.1002/jctb.4362 Yakimov MM, Timmis KN, Wray V, Fredrickson HL (1995) Characterization of a new lipopeptide surfactant produced by thermotolerant and halotolerant subsurface Bacillus licheniformis BAS50. Appl Environ Microb 61(5):1706–1713 Yakimov MM, Fredrickson HL, Timmis KN (1996) Effect of heterogeneity of hydrophobic moieties on surface activity of lichenysin A, a lipopeptide biosurfactant from Bacillus licheniformis BAS50. Biotechnol Appl Bioc 23(1):13–18. doi:10.1111/j.1470-8744.1996.tb00358.x Yakimov MM, Giuliano L, Timmis KN, Golyshin PN (2000) Recombinant acylheptapeptide lichenysin: high level of production by Bacillus subtilis cells. J Mol Microb Biotech 2(2):217–224 Yang M, Zhang W, Ji S, Cao P, Chen Y, Zhao X (2013) Generation of an artificial double promoter for protein expression in Bacillus subtilis through a promoter trap system. PLoS One 8(2):e56321 Yangtse W, Zhou Y, Lei Y, Qiu Y, Wei X, Ji Z, Qi G, Yong Y, Chen L, Chen S (2012) Genome sequence of Bacillus licheniformis WX-02. J Bacteriol 194(13):3561–3562 Youssef NH, Duncan KE, McInerney MJ (2005) Importance of 3-hydroxy fatty acid composition of lipopeptides for biosurfactant activity. Appl Environ Microbiol 71(12):7690–5. doi:10.1128/AEM.71.12.7690-7695.2005