Antifungal activity and mode of action of silver nano-particles on Candida albicans

Biology of Metals - Tập 22 - Trang 235-242 - 2008
Keuk-Jun Kim1, Woo Sang Sung1, Bo Kyoung Suh1, Seok-Ki Moon2, Jong-Soo Choi2, Jong Guk Kim1, Dong Gun Lee1
1Department of Microbiology, College of Natural Sciences, Kyungpook National University, Daegu, South Korea
2Department of Dermatology, College of Medicine, Yeungnam University, Daegu, South Korea

Tóm tắt

In this study, the antifungal effects of silver nano-particles (nano-Ag) and their mode of action were investigated. Nano-Ag showed antifungal effects on fungi tested with low hemolytic effects against human erythrocytes. To elucidate the antifungal mode of action of nano-Ag, flow cytometry analysis, a glucose-release test, transmission electron microscopy (TEM) and the change in membrane dynamics using 1,6-diphenyl-1,3,5-hexatriene (DPH), as a plasma membrane probe, were performed with Candida albicans. The results suggest nano-Ag may exert an antifungal activity by disrupting the structure of the cell membrane and inhibiting the normal budding process due to the destruction of the membrane integrity. The present study indicates nano-Ag has considerable antifungal activity, deserving further investigation for clinical applications.

Tài liệu tham khảo

Alvarez-Peral FJ, Zaragoza O, Pedreno Y, Argüelles J (2002) Protective role of trehalose during severe oxidative stress caused by hydrogen peroxide and the adaptive oxidative stress response in Candida albicans. Microbiology 148:2599–2606 Baker C, Pradhan A, Pakstis L, Pochan DJ, Shah SI (2005) Synthesis and antibacterial properties of silver nanoparticles. J Nanosci Nanotechnol 5:244–249. doi:10.1166/jnn.2005.034 Brigger I, Dubernet C, Couvreur P (2002) Nanoparticles in cancer therapy and diagnosis. Adv Drug Deliv Rev 54:631–651. doi:10.1016/S0169-409X(02)00044-3 Chan WCW, Maxwell DJ, Gao X, Bailey RE, Han M, Nie S (2002) Luminescent quantum dots for multiplexed biological detection and imaging. Curr Opin Biotechnol 13:40–46. doi:10.1016/S0958-1669(02)00282-3 Elbein AD, Pan YT, Pastuszak I, Carroll D (2003) New insights on trehalose: a multifunctional molecule. Glycobiology 13:17R–27R. doi:10.1093/glycob/cwg047 Endo M, Takesako K, Kato I, Yamaguchi H (1997) Fungicidal action of aureobasidin A, a cyclic depsipeptide antifungal antibiotic, against Saccharomyces cerevisiae. Antimicrob Agents Chemother 41:672–676 Fernandes AR, Prieto FM, Sa-Correia I (2000) Modification of plasma membrane lipid order and H+-ATPase activity as part of the response of Saccharomyces cerevisiae to cultivation under mild and high copper stress. Arch Microbiol 173:262–268. doi:10.1007/s002030000138 Fujii G, Chang J, Coley T, Steere B (1997) The formation of amphotericin B ion channels in lipid bilayers. Biochemistry 36:4959–4968. doi:10.1021/bi962894z Goffeau A (2008) Drug resistance: the fight against fungi. Nature 452:541–542. doi:10.1038/452541a Green LJ, Marder P, Mann LL, Chio LC, Current WL (1999) LY303366 exhibits rapid and potent fungicidal activity in flow cytometric assays of yeast viability. Antimicrob Agents Chemother 43:830–835 Hartsel S, Bolard J (1996) Amphotericin B: new life for an old drug. Trends Pharmacol Sci 17:445–449. doi:10.1016/S0165-6147(96)01012-7 Herrera M, Carrion P, Baca P, Liebana J, Castillo A (2001) In vitro antibacterial activity of glass-ionomer cements. Microbios 104:141–148 Klasen HJ (2000) A historical review of the use of silver in the treatment of burns. II. Renewed interest for silver. Burns 26:131–138. doi:10.1016/S0305-4179(99)00116-3 Klaus T, Joerger R, Olsson E, Granqvist C-G (1999) Silver-based crystalline nanoparticles, microbially fabricated. Proc Natl Acad Sci USA 96:13611–13614. doi:10.1073/pnas.96.24.13611 Lee DG, Kim HK, Kim SA, Park Y, Park S-C, Jang S-H et al (2003) Fungicidal effect of indolicidin and its interaction with phospholipids membranes. Biochem Biophys Res Commun 305:305–310. doi:10.1016/S0006-291X(03)00755-1 Liao RS, Rennie RP, Talbot JA (1999) Assessment of the effect of amphotericin B on the vitality of Candida albicans. Antimicrob Agents Chemother 43:1034–1041 Mares D, Romagnoli C, Sacchetti G, Vicentini CB, Bruni A (1998) Morphological study of Trichophyton rubrum: Ultrastructural findings after treatment with 4-amino-3-methyl-l-phenylpyrazolo-(3, 4-c) isothiazole. Med Mycol 36:379–385. doi:10.1080/02681219880000601 Melaiye A, Sun Z, Hindi K, Milsted A, Ely D, Reneker DH et al (2005) Silver(I)-imidazole cyclophane gem-diol complexes encapsulated by electrospun tecophilic nanofibers: formation of nanosilver particles and antimicrobial activity. J Am Chem Soc 127:2285–2291. doi:10.1021/ja040226s Merisko-Liversidge E, Liversidge GG, Cooper ER (2003) Nanosizing: a formulation approach for poorly-water-soluble compounds. Eur J Pharm Sci 18:113–120. doi:10.1016/S0928-0987(02)00251-8 Osumi M (1998) The ultrastructure of yeast: cell wall structure and formation. Micron 29:207–233. doi:10.1016/S0968-4328(97)00072-3 Park Y, Lee DG, Jang S-H, Woo E-R, Jeong HG, Choi C-H et al (2003) A Leu-Lys-rich antimicrobial peptide: activity and mechanism. Biochim Biophys Acta 1645:172–182 Silver S (2003) Bacterial silver resistance: molecular biology and uses and misuses of silver compounds. FEMS Microbiol Rev 27:341–353. doi:10.1016/S0168-6445(03)00047-0 Sondi I, Salopek-Sondi B (2004) Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. J Colloid Interface Sci 275:177–182. doi:10.1016/j.jcis.2004.02.012 Sondi I, Siiman O, Matijević E (2000) Preparation of aminodextran-CdS nanoparticle complexes and biologically active antibody-aminodextran-CdS nanoparticle conjugates. Langmuir 16:3107–3118. doi:10.1021/la991109r Sung WS, Lee I-S, Lee DG (2007) Damage to the cytoplasmic membrane and cell death caused by lycopene in Candida albicans. J Microbiol Biotechnol 17:1797–1804 Tas J, Westerneng G (1981) Fundamental aspects of the interaction of propidium diiodide with nuclei acids studied in a model system of polyacrylamide films. J Histochem Cytochem 29:929–936 Zhao GJ, Stevens SE (1998) Multiple parameters for the comprehensive evaluation of the susceptibility of Escherichia coli to the silver ion. Biometals 11:27–32. doi:10.1023/A:1009253223055