Comparison of nanoparticles effects on biogas and methane production from anaerobic digestion of cattle dung slurry

Renewable Energy - Tập 87 - Trang 592-598 - 2016
E. Abdelsalam1, M. Samer2, Y.A. Attia1,3, M.A. Abdel-Hadi4, H.E. Hassan1, Y. Badr1
1National Institute of Laser Enhanced Sciences (NILES), Cairo University, 12613, Giza, Egypt
2Department of Agricultural Engineering, Faculty of Agriculture, Cairo University, 12613, Giza, Egypt
3Physical Chemistry Department, Faculty of Chemistry, and NANOMAG Laboratory, University of Santiago de Compostela, E-15782 Santiago de Compostela, Spain
4Department of Agricultural Engineering, Faculty of Agriculture, Suez-Canal University, 41522 Ismailia, Egypt

Tài liệu tham khảo

Feng, 2014, Enhanced anaerobic digestion of waste activated sludge digestion by the addition of zero valent iron, Water Res., 52, 242, 10.1016/j.watres.2013.10.072 Ravuri, 2013, Role of factors influencing on anaerobic process for production of bio hydrogen, Future Fuel. Int. J. Adv. Chem., 1, 31 Yadvika, 2001, Enhancement of biogas production from solid substrates using different techniques – a review, Bioresour. Technol., 95, 1, 10.1016/j.biortech.2004.02.010 Demirel, 2011, Trace element requirements of agricultural biogas digesters during biological conversion of renewable biomass to methane, Biomass Bioenergy, 35, 992, 10.1016/j.biombioe.2010.12.022 Thauer, 2001, Methanogenic archaea: ecologically relevant differences in energy conservation, Nat. Rev. Microbiol., 6, 579, 10.1038/nrmicro1931 Feng, 2010, Impact of trace element addition on biogas production from food industrial waste-linking process to microflora, FEMS Microbiol. Ecol., 74, 226, 10.1111/j.1574-6941.2010.00932.x Zandvoort, 2006, Induction of cobalt limitation in methanol feed UASB-reactors, J. Chem. Technol. Biotechnol., 81, 1486, 10.1002/jctb.1559 Zitomer, 2008, Metal stimulation and municipal digester thermophilic/mesophilic activity, J. Environ. Eng., 134, 42, 10.1061/(ASCE)0733-9372(2008)134:1(42) Bini, 2010, Archaeal transformation of metals in the environment, FEMS Microbiol. Ecol., 73, 1 Rodionov, 2001, Comparative and functional genomics analysis of prokaryotic nickel and cobalt uptake transporters: evidence for a novel group of ATP-binding cassette transporters, J. Bacteriol., 188, 317, 10.1128/JB.188.1.317-327.2006 Qiang, 2012, High-solid mesophilic methane fermentation of food waste with an emphasis on Iron, Cobalt, and Nickel requirements, Bioresour. Technol., 103, 21, 10.1016/j.biortech.2011.09.036 Gustavsson, 2013, Bioavailability of cobalt and nickel during anaerobic digestion of sulfur-rich stillage for biogas formation, App Energy, 112, 473, 10.1016/j.apenergy.2013.02.009 Luna-del Risco, 2011, Particle-size effect of CuO and ZnO on biogas and methane production during anaerobic digestion, J. Hazard Mater, 189, 603, 10.1016/j.jhazmat.2011.02.085 Zhang, 2010, Performance of a ZVI-UASB reactor for azo dye wastewater treatment, J. Chem. Technol. Biotechnol. Laroui, 2011, Nanomedicine in GI, Am. J. Physiol. Gastrointest. Liver Physiol., 300, 371, 10.1152/ajpgi.00466.2010 Powell, 2010, Origin and fate of dietary nanoparticles and microparticles in the gastrointestinal tract, J. Autoimmun., 34, 226, 10.1016/j.jaut.2009.11.006 Kim, 2003, Application of ferro-cobalt magnetic fluid for oil sealing, J. Magn. Magn. Mater, 267, 105, 10.1016/S0304-8853(03)00342-1 Mu, 2011, Effects of metal oxide nanoparticles (TiO2, Al2O3, SiO2 and ZnO) on waste activated sludge anaerobic digestion, Bioresour. Technol., 102, 10305, 10.1016/j.biortech.2011.08.100 Abdelsalam, 2015 Abdelsalam, 2015, Effects of CoCl2, NiCl2 and FeCl3 additives on biogas and methane production, Misr J. Agric. Eng., 32, 843, 10.21608/mjae.2015.98656 Samer, 2010, A software program for planning and designing biogas plants, Trans. ASABE, 53, 1277, 10.13031/2013.32592 Uemura, 2010, Mineral requirements for mesophilic and thermophilic anaerobic digestion of organic solid waste, Int. J. Environ. Res., 4, 33 Bożym, 2015, An analysis of metal concentrations in food wastes for biogas production, Renew. Eng., 77, 467, 10.1016/j.renene.2014.11.010 Schattauer, 2011, Abundance of trace elements in demonstration biogas plants, Biosyst. Eng., 108, 57, 10.1016/j.biosystemseng.2010.10.010 Zhang, 2003, Uptake and mass balance of trace metals for methane producing bacteria, Biomass Bioenergy, 25, 427, 10.1016/S0961-9534(03)00012-6 Altas, 2009, Inhibitory effect of heavy metals on methane-producing anaerobic granular sludge, J. Hazard Mater, 162, 1551, 10.1016/j.jhazmat.2008.06.048 Wu, 2011, Inhibitory effects of Cu (II) on fermentative methane production using bamboo wastewater as substrate, J. Hazard Mater, 195, 170, 10.1016/j.jhazmat.2011.08.021 Ni, 2013, Effect of magnetic nanoparticles on the performance of activated sludge treatment system, Bioresour. Technol., 143, 555, 10.1016/j.biortech.2013.06.041 Krongthamchat, 2006, Effect of trace metals on halophilic and mixed cultures in anaerobic treatment, Int. J. Environ. Sci. Technol., 3, 103, 10.1007/BF03325913 Liu, 2011, Applying an electric field in a built-in zero valent iron-anaerobic reactor for enhancement of sludge granulation, Water Res., 45, 1258, 10.1016/j.watres.2010.10.002 Mu, 2011, Long-term effect of ZnO nanoparticles on waste activated sludge anaerobic digestion, Water Res., 45, 5612, 10.1016/j.watres.2011.08.022 Zandvoort, 2002, Effect of long-term cobalt deprivation on methanol degradation in a methanogenic granular sludge reactor, Biotechnol. Progr., 18, 1233, 10.1021/bp020078e Qiang, 2013, Trace metals requirements for continuous thermophilic methane fermentation of high-solid food waste, Chem. Eng. J., 222, 330, 10.1016/j.cej.2013.02.076 Banks, 2012, Trace element requirements for stable food waste digestion at elevated ammonia concentrations, Bioresour. Technol., 104, 127, 10.1016/j.biortech.2011.10.068 Dinh, 2004, Iron corrosion by novel anaerobic microorganisms, Nature, 427, 829, 10.1038/nature02321