Metabolic syndrome influences cardiac gene expression pattern at the transcript level in male ZDF rats

Springer Science and Business Media LLC - Tập 12 - Trang 1-17 - 2013
Márta Sárközy1, Ágnes Zvara2, Nóra Gyémánt1, Veronika Fekete1, Gabriella F Kocsis1, Judit Pipis1,3, Gergő Szűcs1, Csaba Csonka1,3, László G Puskás2, Péter Ferdinandy3,4, Tamás Csont1,3
1Cardiovascular Research Group, Department of Biochemistry, Faculty of Medicine, University of Szeged, Szeged, Hungary
2Department of Functional Genomics, Biological Research Center, Szeged, Hungary
3Pharmahungary Group, Szeged, Hungary
4Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Budapest, Hungary

Tóm tắt

Metabolic syndrome (coexisting visceral obesity, dyslipidemia, hyperglycemia, and hypertension) is a prominent risk factor for cardiovascular morbidity and mortality, however, its effect on cardiac gene expression pattern is unclear. Therefore, we examined the possible alterations in cardiac gene expression pattern in male Zucker Diabetic Fatty (ZDF) rats, a model of metabolic syndrome. Fasting blood glucose, serum insulin, cholesterol and triglyceride levels were measured at 6, 16, and 25 wk of age in male ZDF and lean control rats. Oral glucose tolerance test was performed at 16 and 25 wk of age. At week 25, total RNA was isolated from the myocardium and assayed by rat oligonucleotide microarray for 14921 genes. Expression of selected genes was confirmed by qRT-PCR. Fasting blood glucose, serum insulin, cholesterol and triglyceride levels were significantly increased, glucose tolerance and insulin sensitivity were impaired in ZDF rats compared to leans. In hearts of ZDF rats, 36 genes showed significant up-regulation and 49 genes showed down-regulation as compared to lean controls. Genes with significantly altered expression in the heart due to metabolic syndrome includes functional clusters of metabolism (e.g. 3-hydroxy-3-methylglutaryl-Coenzyme A synthase 2; argininosuccinate synthetase; 2-amino-3-ketobutyrate-coenzyme A ligase), structural proteins (e.g. myosin IXA; aggrecan1), signal transduction (e.g. activating transcription factor 3; phospholipase A2; insulin responsive sequence DNA binding protein-1) stress response (e.g. heat shock 70kD protein 1A; heat shock protein 60; glutathione S-transferase Yc2 subunit), ion channels and receptors (e.g. ATPase, (Na+)/K+ transporting, beta 4 polypeptide; ATPase, H+/K+ transporting, nongastric, alpha polypeptide). Moreover some other genes with no definite functional clusters were also changed such as e.g. S100 calcium binding protein A3; ubiquitin carboxy-terminal hydrolase L1; interleukin 18. Gene ontology analysis revealed several significantly enriched functional inter-relationships between genes influenced by metabolic syndrome. Metabolic syndrome significantly alters cardiac gene expression profile which may be involved in development of cardiac pathologies in the presence of metabolic syndrome.

Tài liệu tham khảo

He J, Ogden LG, Bazzano LA, Vupputuri S, Loria C, Whelton PK: Risk factors for congestive heart failure in US men and women: NHANES I epidemiologic follow-up study. Arch Intern Med. 2001, 161: 996-1002. 10.1001/archinte.161.7.996. Lakka HM, Laaksonen DE, Lakka TA, Niskanen LK, Kumpusalo E, Tuomilehto J, Salonen JT: The metabolic syndrome and total and cardiovascular disease mortality in middle-aged men. JAMA. 2002, 288: 2709-2716. 10.1001/jama.288.21.2709. Sattar N, Gaw A, Scherbakova O, Ford I, O'Reilly DS, Haffner SM, Isles C, Macfarlane PW, Packard CJ, Cobbe SM, Shepherd J: Metabolic syndrome with and without C-reactive protein as a predictor of coronary heart disease and diabetes in the West of Scotland Coronary Prevention Study. Circulation. 2003, 108: 414-419. 10.1161/01.CIR.0000080897.52664.94. Malik S, Wong ND, Franklin SS, Kamath TV, L'Italien GJ, Pio JR, Williams GR: Impact of the metabolic syndrome on mortality from coronary heart disease, cardiovascular disease, and all causes in United States adults. Circulation. 2004, 110: 1245-1250. 10.1161/01.CIR.0000140677.20606.0E. Alberti KG, Zimmet P, Shaw J: IDF Epidemiology Task Force Consensus Group: The metabolic syndrome–a new worldwide definition. Lancet. 2005, 366: 1059-1062. 10.1016/S0140-6736(05)67402-8. Alberti KG, Eckel RH, Grundy SM, Zimmet PZ, Cleeman JI, Donato KA, Fruchart JC, James WP, Loria CM, Smith SC, International Diabetes Federation Task Force on Epidemiology and Prevention, Hational Heart, Lung, and Blood Institute, American Heart Association, World Heart Federation, International Atherosclerosis Society, International Association for the Study of Obesity: Harmonizing the metabolic syndrome: a joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation. 2009, 120: 1640-1645. 10.1161/CIRCULATIONAHA.109.192644. Grundy SM: Pre-diabetes, metabolic syndrome, and cardiovascular risk. J Am Coll Cardiol. 2012, 59: 635-643. 10.1016/j.jacc.2011.08.080. Reaven GM: Insulin resistance, the insulin resistance syndrome, and cardiovascular disease. Panminerva Med. 2005, 47: 201-210. Aschner P: Metabolic syndrome as a risk factor for diabetes. Expert Rev Cardiovasc Ther. 2010, 8: 407-412. 10.1586/erc.10.13. Mensah GA, Mokdad AH, Ford E, Narayan KM, Giles WH, Vinicor F, Deedwania PC: Obesity, metabolic syndrome, and type 2 diabetes: emerging epidemics and their cardiovascular implications. Cardiol Clin. 2004, 22: 485-504. 10.1016/j.ccl.2004.06.005. Giricz Z, Mentzer RM, Gottlieb RA: Autophagy, myocardial protection, and the metabolic syndrome. J Cardiovasc Pharmacol. 2012, 60: 125-132. 10.1097/FJC.0b013e318256ce10. Ovize M, Baxter GF, Di Lisa F, Ferdinandy P, Garcia-Dorado D, Hausenloy DJ, Heusch G, Vinten-Johansen J, Yellon DM, Schulz R, Working Group of Cellular Biology of Heart of European Society of Cardiology: Postconditioning and protection from reperfusion injury: where do we stand? Position paper from the Working Group of Cellular Biology of the Heart of the European Society of Cardiology. Cardiovasc Res. 2010, 87: 406-423. 10.1093/cvr/cvq129. Ferdinandy P, Schulz R, Baxter GF: Interaction of cardiovascular risk factors with myocardial ischemia/reperfusion injury, preconditioning, and postconditioning. Pharmacol Rev. 2007, 59: 418-458. 10.1124/pr.107.06002. Kristiansen SB, Lofgren B, Stottrup NB, Khatir D, Nielsen-Kudsk JE, Nielsen TT, Botker HE, Flyvbjerg A: Ischaemic preconditioning does not protect the heart in obese and lean animal models of type 2 diabetes. Diabetologia. 2004, 47: 1716-1721. 10.1007/s00125-004-1514-4. Ravingerova T, Stetka R, Pancza D, Ulicna O, Ziegelhoffer A, Styk J: Susceptibility to ischemia-induced arrhythmias and the effect of preconditioning in the diabetic rat heart. Physiol Res. 2000, 49: 607-616. Tosaki A, Pali T, Droy-Lefaix MT: Effects of Ginkgo biloba extract and preconditioning on the diabetic rat myocardium. Diabetologia. 1996, 39: 1255-1262. 10.1007/s001250050567. Tosaki A, Engelman DT, Engelman RM, Das DK: The evolution of diabetic response to ischemia/reperfusion and preconditioning in isolated working rat hearts. Cardiovasc Res. 1996, 31: 526-536. Przyklenk K, Maynard M, Greiner DL, Whittaker P: Cardioprotection with postconditioning: loss of efficacy in murine models of type-2 and type-1 diabetes. Antioxid Redox Signal. 2011, 14: 781-790. 10.1089/ars.2010.3343. Ungi I, Ungi T, Ruzsa Z, Nagy E, Zimmermann Z, Csont T, Ferdinandy P: Hypercholesterolemia attenuates the anti-ischemic effect of preconditioning during coronary angioplasty. Chest. 2005, 128: 1623-1628. 10.1378/chest.128.3.1623. Kupai K, Csonka C, Fekete V, Odendaal L, van Rooyen J, Marais De W, Csont T, Ferdinandy P: Cholesterol diet-induced hyperlipidemia impairs the cardioprotective effect of postconditioning: role of peroxynitrite. Am J Physiol Heart Circ Physiol. 2009, 297: H1729-H1735. 10.1152/ajpheart.00484.2009. Cameron AJ, Shaw JE, Zimmet PZ: The metabolic syndrome: prevalence in worldwide populations. Endocrinol Metab Clin North Am. 2004, 33: 351-375. 10.1016/j.ecl.2004.03.005. table of contents Amuna P, Zotor FB: Epidemiological and nutrition transition in developing countries: impact on human health and development. Proc Nutr Soc. 2008, 67: 82-90. 10.1017/S0029665108006058. de Onis M, Blossner M: Prevalence and trends of overweight among preschool children in developing countries. Am J Clin Nutr. 2000, 72: 1032-1039. Ford ES, Giles WH, Dietz WH: Prevalence of the metabolic syndrome among US adults: findings from the third National Health and Nutrition Examination Survey. JAMA. 2002, 287: 356-359. 10.1001/jama.287.3.356. Abdul-Ghani MA, Williams K, DeFronzo RA, Stern M: What is the best predictor of future type 2 diabetes?. Diabetes Care. 2007, 30: 1544-1548. 10.2337/dc06-1331. Suh YH, Kim Y, Bang JH, Choi KS, Lee JW, Kim WH, Oh TJ, An S, Jung MH: Analysis of gene expression profiles in insulin-sensitive tissues from pre-diabetic and diabetic Zucker diabetic fatty rats. J Mol Endocrinol. 2005, 34: 299-315. 10.1677/jme.1.01679. Garnett KE, Chapman P, Chambers JA, Waddell ID, Boam DS: Differential gene expression between Zucker Fatty rats and Zucker Diabetic Fatty rats: a potential role for the immediate-early gene Egr-1 in regulation of beta cell proliferation. J Mol Endocrinol. 2005, 35: 13-25. 10.1677/jme.1.01792. Bray GA: The Zucker-fatty rat: a review. Fed Proc. 1977, 36: 148-153. Kurtz TW, Morris RC, Pershadsingh HA: The Zucker fatty rat as a genetic model of obesity and hypertension. Hypertension. 1989, 13: 896-901. 10.1161/01.HYP.13.6.896. de Chantemele EJ B, Vessieres E, Guihot AL, Toutain B, Maquignau M, Loufrani L, Henrion D: Type 2 diabetes severely impairs structural and functional adaptation of rat resistance arteries to chronic changes in blood flow. Cardiovasc Res. 2009, 81: 788-796. Gustavsson C, Soga T, Wahlstrom E, Vesterlund M, Azimi A, Norstedt G, Tollet-Egnell P: Sex-dependent hepatic transcripts and metabolites in the development of glucose intolerance and insulin resistance in Zucker diabetic fatty rats. J Mol Endocrinol. 2011, 47: 129-143. 10.1530/JME-11-0007. Corsetti JP, Sparks JD, Peterson RG, Smith RL, Sparks CE: Effect of dietary fat on the development of non-insulin dependent diabetes mellitus in obese Zucker diabetic fatty male and female rats. Atherosclerosis. 2000, 148: 231-241. 10.1016/S0021-9150(99)00265-8. Leonard BL, Watson RN, Loomes KM, Phillips AR, Cooper GJ: Insulin resistance in the Zucker diabetic fatty rat: a metabolic characterisation of obese and lean phenotypes. Acta Diabetol. 2005, 42: 162-170. 10.1007/s00592-005-0197-8. Peterson RG, Shaw WN, Neel M, Little LA, Eichberg J: Zucker diabetic fatty rat as a model for noninsulindependent diabetes mellitus. ILAR News. 1990, 32: 16-19. 10.1093/ilar.32.3.16. Unger RH, Orci L: Diseases of liporegulation: new perspective on obesity and related disorders. FASEB J. 2001, 15: 312-321. 10.1096/fj.00-0590. Csont T, Balogh G, Csonka C, Boros I, Horvath I, Vigh L, Ferdinandy P: Hyperlipidemia induced by high cholesterol diet inhibits heat shock response in rat hearts. Biochem Biophys Res Commun. 2002, 290: 1535-1538. 10.1006/bbrc.2002.6377. Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC: Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia. 1985, 28: 412-419. 10.1007/BF00280883. Gayoso-Diz P, Otero-Gonzalez A, Rodriguez-Alvarez MX, Gude F, Cadarso-Suarez C, Garcia F, De Francisco A: Insulin resistance index (HOMA-IR) levels in a general adult population: curves percentile by gender and age. The EPIRCE study. Diabetes Res Clin Pract. 2011, 94: 146-155. 10.1016/j.diabres.2011.07.015. Barr EL, Cameron AJ, Balkau B, Zimmet PZ, Welborn TA, Tonkin AM, Shaw JE: HOMA insulin sensitivity index and the risk of all-cause mortality and cardiovascular disease events in the general population: the Australian Diabetes, Obesity and Lifestyle Study (AusDiab) study. Diabetologia. 2010, 53: 79-88. 10.1007/s00125-009-1588-0. Csont T, Bereczki E, Bencsik P, Fodor G, Gorbe A, Zvara A, Csonka C, Puskas LG, Santha M, Ferdinandy P: Hypercholesterolemia increases myocardial oxidative and nitrosative stress thereby leading to cardiac dysfunction in apoB-100 transgenic mice. Cardiovasc Res. 2007, 76: 100-109. 10.1016/j.cardiores.2007.06.006. Chinen I, Shimabukuro M, Yamakawa K, Higa N, Matsuzaki T, Noguchi K, Ueda S, Sakanashi M, Takasu N: Vascular lipotoxicity: endothelial dysfunction via fatty-acid-induced reactive oxygen species overproduction in obese Zucker diabetic fatty rats. Endocrinology. 2007, 148: 160-165. Zoja C, Cattaneo S, Fiordaliso F, Lionetti V, Zambelli V, Salio M, Corna D, Pagani C, Rottoli D, Bisighini C, Remuzzi G, Benigni A: Distinct cardiac and renal effects of ETA receptor antagonist and ACE inhibitor in experimental type 2 diabetes. Am J Physiol Renal Physiol. 2011, 301: F1114-F1123. 10.1152/ajprenal.00122.2011. Virok DP, Kis Z, Szegedi V, Juhasz G, Zvara A, Muller G, Levay G, Harsing LG, Rajko R, Penke B, Janka Z, Janaky T, Puskas LG: Functional changes in transcriptomes of the prefrontal cortex and hippocampus in a mouse model of anxiety. Pharmacol Rep. 2011, 63: 348-361. 10.1124/pr.109.001933. Nagy A, Kenesi E, Rentsendorj O, Molnar A, Szenasi T, Sinko I, Zvara A, Oommen ST, Barta E, Puskas LG, Lefebvre V, Kiss I: Evolutionarily conserved, growth plate zone-specific regulation of the matrilin-1 promoter: L-Sox5/Sox6 and Nfi factors bound near TATA finely tune activation by Sox9. Mol Cell Biol. 2011, 31: 686-699. 10.1128/MCB.00019-10. Erdi B, Nagy P, Zvara A, Varga A, Pircs K, Menesi D, Puskas LG, Juhasz G: Loss of the starvation-induced gene Rack1 leads to glycogen deficiency and impaired autophagic responses in Drosophila. Autophagy. 2012, 8: 1124-1135. Skov V, Knudsen S, Olesen M, Hansen ML, Rasmussen LM: Global gene expression profiling displays a network of dysregulated genes in non-atherosclerotic arterial tissue from patients with type 2 diabetes. Cardiovasc Diabetol. 2012, 11: 15-10.1186/1475-2840-11-15. Bell RM, Yellon DM: Conditioning the whole heart–not just the cardiomyocyte. J Mol Cell Cardiol. 2012, 53: 24-32. 10.1016/j.yjmcc.2012.04.001. Cury DP, Dias FJ, Sosthenes MC, Dos Santos Haemmerle CA, Ogawa K, Da Silva MC, Mardegan Issa JP, Iyomasa MM, Watanabe IS: Morphometric, quantitative, and three-dimensional analysis of the heart muscle fibers of old rats: Transmission electron microscopy and high-resolution scanning electron microscopy methods. Microsc Res Tech. 2012, in press Kuhlmann J, Neumann-Haefelin C, Belz U, Kalisch J, Juretschke HP, Stein M, Kleinschmidt E, Kramer W, Herling AW: Intramyocellular lipid and insulin resistance: a longitudinal in vivo 1H-spectroscopic study in Zucker diabetic fatty rats. Diabetes. 2003, 52: 138-144. 10.2337/diabetes.52.1.138. Shimamura M, Nakagami H, Shimosato T, Moritani T, Nakagami F, Osako MK, Miyake T, Koriyama H, Shimizu H, Morishita R: Irbesartan improves endothelial dysfunction, abnormal lipid profile, proteinuria and liver dysfunction in Zucker diabetic fatty rats independent of glucose and insulin levels. Exp Ther Med. 2011, 2: 957-961. Perez-Martinez P, Garcia-Rios A, Delgado-Lista J, Gjelstad IM, Gibney J, Kiec-Wilk B, Camargo A, Helal O, Karlstrom B, Blaak EE, Hall W, Riserus U, Dembinska-Kiec A, Defoort C, Saris WH, Lovegrove JA, Drevon CA, Roche HM, Lopez-Miranda J: Gene-nutrient interactions on the phosphoenolpyruvate carboxykinase influence insulin sensitivity in metabolic syndrome subjects. Clin Nutr. 2012, in press Fredersdorf S, Endemann DH, Luchner A, Heitzmann D, Ulucan C, Birner C, Schmid P, Stoelcker B, Resch M, Muders F, Riegger GA, Weil J: Increased aldosterone levels in a model of type 2 diabetes mellitus. Exp Clin Endocrinol Diabetes. 2009, 117: 15-20. 10.1055/s-2008-1073128. Leguisamo NM, Lehnen AM, Machado UF, Okamoto MM, Markoski MM, Pinto GH, Schaan BD: GLUT4 content decreases along with insulin resistance and high levels of inflammatory markers in rats with metabolic syndrome. Cardiovasc Diabetol. 2012, 11: 100-10.1186/1475-2840-11-100. Fiordaliso F, Leri A, Cesselli D, Limana F, Safai B, Nadal-Ginard B, Anversa P, Kajstura J: Hyperglycemia activates p53 and p53-regulated genes leading to myocyte cell death. Diabetes. 2001, 50: 2363-2375. 10.2337/diabetes.50.10.2363. Laakso M: Hyperglycemia and cardiovascular disease in type 2 diabetes. Diabetes. 1999, 48: 937-942. 10.2337/diabetes.48.5.937. Uehata M, Ishizaki T, Satoh H, Ono T, Kawahara T, Morishita T, Tamakawa H, Yamagami K, Inui J, Maekawa M, Narumiya S: Calcium sensitization of smooth muscle mediated by a Rho-associated protein kinase in hypertension. Nature. 1997, 389: 990-994. 10.1038/40187. Ishiko K, Sakoda T, Akagami T, Naka T, Doi T, Tsujino T, Masuyama T, Ohyanagi M: Hyperglycemia induced cell growth and gene expression via the serum response element through RhoA and Rho-kinase in vascular smooth muscle cells. Prep Biochem Biotechnol. 2010, 40: 139-151. 10.1080/10826060903558927. Kovacs P, Szilvassy Z, Hegyi P, Nemeth J, Ferdinandy P, Tosaki A: Effect of transdermal nitroglycerin on glucose-stimulated insulin release in healthy male volunteers. Eur J Clin Invest. 2000, 30: 41-44. 10.1046/j.1365-2362.2000.00588.x. Toblli J, Cao G, Rivas C, Munoz M, Giani J, Dominici F, Angerosa M: Cardiovascular protective effects of nebivolol in Zucker diabetic fatty rats. J Hypertens. 2010, 28: 1007-1019. 10.1097/HJH.0b013e328337598c. van Zwieten PA: Diabetes and hypertension: experimental models for pharmacological studies. Clin Exp Hypertens. 1999, 21: 1-16. 10.3109/10641969909068644. Cosson E, Valensi P, Laude D, Mesangeau D, Dabire H: Arterial stiffness and the autonomic nervous system during the development of Zucker diabetic fatty rats. Diabetes Metab. 2009, 35: 364-370. 10.1016/j.diabet.2009.02.007. Grinblat L, Pacheco Bolanos LF, Stoppani AO: Decreased rate of ketone-body oxidation and decreased activity of D-3-hydroxybutyrate dehydrogenase and succinyl-CoA:3-oxo-acid CoA-transferase in heart mitochondria of diabetic rats. Biochem J. 1986, 240: 49-56. Durgan DJ, Smith JK, Hotze MA, Egbejimi O, Cuthbert KD, Zaha VG, Dyck JR, Abel ED, Young ME: Distinct transcriptional regulation of long-chain acyl-CoA synthetase isoforms and cytosolic thioesterase 1 in the rodent heart by fatty acids and insulin. Am J Physiol Heart Circ Physiol. 2006, 290: H2480-H2497. 10.1152/ajpheart.01344.2005. Onody A, Csonka C, Giricz Z, Ferdinandy P: Hyperlipidemia induced by a cholesterol-rich diet leads to enhanced peroxynitrite formation in rat hearts. Cardiovasc Res. 2003, 58: 663-670. 10.1016/S0008-6363(03)00330-4. Escobales N, Crespo MJ: Oxidative-nitrosative stress in hypertension. Curr Vasc Pharmacol. 2005, 3: 231-246. 10.2174/1570161054368643. Kaneki M, Shimizu N, Yamada D, Chang K: Nitrosative stress and pathogenesis of insulin resistance. Antioxid Redox Signal. 2007, 9: 319-329. 10.1089/ars.2006.1464. Pacher P, Obrosova IG, Mabley JG, Szabo C: Role of nitrosative stress and peroxynitrite in the pathogenesis of diabetic complications. Emerging new therapeutical strategies. Curr Med Chem. 2005, 12: 267-275. 10.2174/0929867053363207. Goodwin BL, Pendleton LC, Levy MM, Solomonson LP, Eichler DC: Tumor necrosis factor-alpha reduces argininosuccinate synthase expression and nitric oxide production in aortic endothelial cells. Am J Physiol Heart Circ Physiol. 2007, 293: H1115-H1121. 10.1152/ajpheart.01100.2006. Goodwin BL, Corbin KD, Pendleton LC, Levy MM, Solomonson LP, Eichler DC: Troglitazone up-regulates vascular endothelial argininosuccinate synthase. Biochem Biophys Res Commun. 2008, 370: 254-258. 10.1016/j.bbrc.2008.03.089. Haines RJ, Corbin KD, Pendleton LC, Meininger CJ, Eichler DC: Insulin transcriptionally regulates argininosuccinate synthase to maintain vascular endothelial function. Biochem Biophys Res Commun. 2012, 421: 9-14. 10.1016/j.bbrc.2012.03.074. Wang Y, Lam KS, Lam JB, Lam MC, Leung PT, Zhou M, Xu A: Overexpression of angiopoietin-like protein 4 alters mitochondria activities and modulates methionine metabolic cycle in the liver tissues of db/db diabetic mice. Mol Endocrinol. 2007, 21: 972-986. Staiger H, Haas C, Machann J, Werner R, Weisser M, Schick F, Machicao F, Stefan N, Fritsche A, Haring HU: Muscle-derived angiopoietin-like protein 4 is induced by fatty acids via peroxisome proliferator-activated receptor (PPAR)-delta and is of metabolic relevance in humans. Diabetes. 2009, 58: 579-589. Yamada T, Ozaki N, Kato Y, Miura Y, Oiso Y: Insulin downregulates angiopoietin-like protein 4 mRNA in 3T3-L1 adipocytes. Biochem Biophys Res Commun. 2006, 347: 1138-1144. 10.1016/j.bbrc.2006.07.032. Misra MK, Sarwat M, Bhakuni P, Tuteja R, Tuteja N: Oxidative stress and ischemic myocardial syndromes. Med Sci Monit. 2009, 15: RA209-RA219. Douglas KT: Mechanism of action of glutathione-dependent enzymes. Adv Enzymol Relat Areas Mol Biol. 1987, 59: 103-167. L'Ecuyer T, Allebban Z, Thomas R, Vander Heide R: Glutathione S-transferase overexpression protects against anthracycline-induced H9C2 cell death. Am J Physiol Heart Circ Physiol. 2004, 286: H2057-H2064. 10.1152/ajpheart.00778.2003. Puskas LG, Nagy ZB, Giricz Z, Onody A, Csonka C, Kitajka K, Hackler L, Zvara A, Ferdinandy P: Cholesterol diet-induced hyperlipidemia influences gene expression pattern of rat hearts: a DNA microarray study. FEBS Lett. 2004, 562: 99-104. 10.1016/S0014-5793(04)00189-9. Ivanovic-Matic S, Mihailovic M, Dinic S, Martinovic V, Bogojevic D, Grigorov I, Poznanovic G: The absence of cardiomyopathy is accompanied by increased activities of CAT, MnSOD and GST in long-term diabetes in rats. J Physiol Sci. 2010, 60: 259-266. 10.1007/s12576-010-0093-z. Hung J, McQuillan BM, Chapman CM, Thompson PL, Beilby JP: Elevated interleukin-18 levels are associated with the metabolic syndrome independent of obesity and insulin resistance. Arterioscler Thromb Vasc Biol. 2005, 25: 1268-1273. 10.1161/01.ATV.0000163843.70369.12. Okamoto A, Iwamoto Y, Maru Y: Oxidative stress-responsive transcription factor ATF3 potentially mediates diabetic angiopathy. Mol Cell Biol. 2006, 26: 1087-1097. 10.1128/MCB.26.3.1087-1097.2006. Allen-Jennings AE, Hartman MG, Kociba GJ, Hai T: The roles of ATF3 in glucose homeostasis. A transgenic mouse model with liver dysfunction and defects in endocrine pancreas. J Biol Chem. 2001, 276: 29507-29514. 10.1074/jbc.M100986200. Kloner RA, Przyklenk K, Whittaker P: Deleterious effects of oxygen radicals in ischemia/reperfusion. Resolved and unresolved issues. Circulation. 1989, 80: 1115-1127. 10.1161/01.CIR.80.5.1115. Hartman MG, Lu D, Kim ML, Kociba GJ, Shukri T, Buteau J, Wang X, Frankel WL, Guttridge D, Prentki M, Grey ST, Ron D, Hai T: Role for activating transcription factor 3 in stress-induced beta-cell apoptosis. Mol Cell Biol. 2004, 24: 5721-5732. 10.1128/MCB.24.13.5721-5732.2004. Qi L, Saberi M, Zmuda E, Wang Y, Altarejos J, Zhang X, Dentin R, Hedrick S, Bandyopadhyay G, Hai T, Olefsky J, Montminy M: Adipocyte CREB promotes insulin resistance in obesity. Cell Metab. 2009, 9: 277-286. 10.1016/j.cmet.2009.01.006. Kim JY, Lee SH, Song EH, Park YM, Lim JY, Kim DJ, Choi KH, Park SI, Gao B, Kim WH: A critical role of STAT1 in streptozotocin-induced diabetic liver injury in mice: controlled by ATF3. Cell Signal. 2009, 21: 1758-1767. 10.1016/j.cellsig.2009.07.011. Kim JY, Song EH, Lee S, Lim JH, Choi JS, Koh IU, Song J, Kim WH: The induction of STAT1 gene by activating transcription factor 3 contributes to pancreatic beta-cell apoptosis and its dysfunction in streptozotocin-treated mice. Cell Signal. 2010, 22: 1669-1680. 10.1016/j.cellsig.2010.06.007. Fevre C, Bellenger S, Pierre AS, Minville M, Bellenger J, Gresti J, Rialland M, Narce M, Tessier C: The metabolic cascade leading to eicosanoid precursors–desaturases, elongases, and phospholipases A2–is altered in Zucker fatty rats. Biochim Biophys Acta. 2011, 1811: 409-417. 10.1016/j.bbalip.2010.12.004. Chahal J, Chen CC, Rane MJ, Moore JP, Barati MT, Song Y, Villafuerte BC: Regulation of insulin-response element binding protein-1 in obesity and diabetes: potential role in impaired insulin-induced gene transcription. Endocrinology. 2008, 149: 4829-4836. 10.1210/en.2007-1693. Colomer JM, Mao L, Rockman HA, Means AR: Pressure overload selectively up-regulates Ca2+/calmodulin-dependent protein kinase II in vivo. Mol Endocrinol. 2003, 17: 183-192. 10.1210/me.2002-0350. Chen NH, Wang YL, Ding JH: Increased heart microsomal Na(+) K(+)-transporting ATPase activity by tetrandrine in spontaneously hypertensive rats. Zhongguo Yao Li Xue Bao. 1993, 14: 320-325. Boot-Handford RP, Tuckwell DS, Plumb DA, Rock CF, Poulsom R: A novel and highly conserved collagen (pro(alpha)1(XXVII)) with a unique expression pattern and unusual molecular characteristics establishes a new clade within the vertebrate fibrillar collagen family. J Biol Chem. 2003, 278: 31067-31077. 10.1074/jbc.M212889200. Omelchenko T: Regulation of collective cell migration by RhoGAP myosin IXA. Small GTPases. 2012, 3: 213-218. 10.4161/sgtp.20495. Zhang Y, Resneck WG, Lee PC, Randall WR, Bloch RJ, Ursitti JA: Characterization and expression of a heart-selective alternatively spliced variant of alpha II-spectrin, cardi+, during development in the rat. J Mol Cell Cardiol. 2010, 48: 1050-1059. 10.1016/j.yjmcc.2010.01.001. Yurube T, Takada T, Suzuki T, Kakutani K, Maeno K, Doita M, Kurosaka M, Nishida K: Rat tail static compression model mimics extracellular matrix metabolic imbalances of matrix metalloproteinases, aggrecanases, and tissue inhibitors of metalloproteinases in intervertebral disc degeneration. Arthritis Res Ther. 2012, 14: R51-10.1186/ar3764. Banerjee I, Fuseler JW, Price RL, Borg TK, Baudino TA: Determination of cell types and numbers during cardiac development in the neonatal and adult rat and mouse. Am J Physiol Heart Circ Physiol. 2007, 293: H1883-1191. 10.1152/ajpheart.00514.2007.