Prediction of residual stresses in girth welded pipes using an artificial neural network approach
Tài liệu tham khảo
Withers, 2007, Residual stress and its role in failure, Rep Prog Phys., 70, 2211, 10.1088/0034-4885/70/12/R04
Withers, 2001, Residual stress Part 2–nature and origins, Mat. Sci Technol., 366, 10.1179/026708301101510087
Leggatt, 2008, Residual stresses in welded structures, Int J Press Vessel Pip., 85, 144, 10.1016/j.ijpvp.2007.10.004
Smith, 2012, Accurate prediction of residual stress in stainless steel welds, Comput Mat. Sci., 54, 312, 10.1016/j.commatsci.2011.10.024
Withers, 2001, Residual stress Part 1–measurement techniques, Mat. Sci Technol., 17, 355, 10.1179/026708301101509980
Schajer, 2013
George, 2002, Measurement of through-thickness stresses using small holes, J. Strain Anal. Eng. Des., 37, 125, 10.1243/0309324021514899
Hutchings, 2005
Prime, 2001, Cross-sectional mapping of residual stresses by measuring the surface contour after a cut, J Eng. Mat. Technol., 123, 162, 10.1115/1.1345526
Procedure R6 Revision 4, 2013
API RP 579–1/ASME FFS-1. Houston, TX: American Petroleum Institute; August 2007.
Bouchard, 2007, Validated residual stress profiles for fracture assessments of stainless steel pipe girth welds, Int J Press Vessel Pip., 84, 195, 10.1016/j.ijpvp.2006.10.006
Dong, 2014, On residual stress prescriptions for fitness for service assessment of pipe girth welds, Int J Press Vessel Pip., 123–124, 19, 10.1016/j.ijpvp.2014.07.006
Song, 2015, A full-field residual stress estimation scheme for fitness-for-service assessment of pipe girth welds: Part I–identification of key parameters, Int J Press Vessel Pip., 126–127, 58, 10.1016/j.ijpvp.2015.01.002
Bishop, 1997
Rumelhart, 1986, Learning representations by back-propagating errors, Nature, 323, 533, 10.1038/323533a0
Toktaş, 2011, Artificial neural networks solution to display residual hoop stress field encircling a split-sleeve cold expanded aircraft fastener hole, Expert Syst Appl., 38, 553, 10.1016/j.eswa.2010.06.102
Na, 2007, Prediction of residual stress for dissimilar metals welding at nuclear power plants using fuzzy neural network models, Nucl Eng Technol., 39, 337, 10.5516/NET.2007.39.4.337
Yescas, 2001, Estimation of the amount of retained austenite in austempered ductile irons using neural networks, Mat. Sci Eng A., 311, 162, 10.1016/S0921-5093(01)00913-3
Rosenblatt, 1958, The perceptron: a probabilistic model for information storage and organization in the brain, Psychol Rev., 65, 386, 10.1037/h0042519
Møller, 1993, A scaled conjugate gradient algorithm for fast supervised learning, Neural Netw., 6, 525, 10.1016/S0893-6080(05)80056-5
Bellman, 1961
2012
Mackay, 1991
Pirling, 2006, SALSA, a new concept for strain mapping at the ILL, Mat. Sci Eng A., 437, 139, 10.1016/j.msea.2006.04.083
Manns, 2011, DECcalc - a software for the calculation of diffraction elastic constants from single crystal coefficients, Mat. Sci Forum, 681, 417, 10.4028/www.scientific.net/MSF.681.417
Pagliaro, 2011, Measuring inaccessible residual stresses using multiple methods and superposition, Exp Mech., 51, 1123, 10.1007/s11340-010-9424-5
Hosseinzadeh, 2012, Mapping multiple components of the residual stress tensor in a large P91 steel pipe girth weld using a single contour cut, Exp Mech., 53, 171, 10.1007/s11340-012-9627-z
