Prediction of residual stresses in girth welded pipes using an artificial neural network approach

J. Mathew1,2, R.J. Moat2, S. Paddea2, M.E. Fitzpatrick1, P.J. Bouchard2
1Faculty of Engineering and Computing, Coventry University, Priory Street, Coventry CV1 5FB, UK
2Department of Engineering and Innovation, The Open University, Walton Hall, Milton Keynes MK7 6AA, UK

Tài liệu tham khảo

Withers, 2007, Residual stress and its role in failure, Rep Prog Phys., 70, 2211, 10.1088/0034-4885/70/12/R04 Withers, 2001, Residual stress Part 2–nature and origins, Mat. Sci Technol., 366, 10.1179/026708301101510087 Leggatt, 2008, Residual stresses in welded structures, Int J Press Vessel Pip., 85, 144, 10.1016/j.ijpvp.2007.10.004 Smith, 2012, Accurate prediction of residual stress in stainless steel welds, Comput Mat. Sci., 54, 312, 10.1016/j.commatsci.2011.10.024 Withers, 2001, Residual stress Part 1–measurement techniques, Mat. Sci Technol., 17, 355, 10.1179/026708301101509980 Schajer, 2013 George, 2002, Measurement of through-thickness stresses using small holes, J. Strain Anal. Eng. Des., 37, 125, 10.1243/0309324021514899 Hutchings, 2005 Prime, 2001, Cross-sectional mapping of residual stresses by measuring the surface contour after a cut, J Eng. Mat. Technol., 123, 162, 10.1115/1.1345526 Procedure R6 Revision 4, 2013 API RP 579–1/ASME FFS-1. Houston, TX: American Petroleum Institute; August 2007. Bouchard, 2007, Validated residual stress profiles for fracture assessments of stainless steel pipe girth welds, Int J Press Vessel Pip., 84, 195, 10.1016/j.ijpvp.2006.10.006 Dong, 2014, On residual stress prescriptions for fitness for service assessment of pipe girth welds, Int J Press Vessel Pip., 123–124, 19, 10.1016/j.ijpvp.2014.07.006 Song, 2015, A full-field residual stress estimation scheme for fitness-for-service assessment of pipe girth welds: Part I–identification of key parameters, Int J Press Vessel Pip., 126–127, 58, 10.1016/j.ijpvp.2015.01.002 Bishop, 1997 Rumelhart, 1986, Learning representations by back-propagating errors, Nature, 323, 533, 10.1038/323533a0 Toktaş, 2011, Artificial neural networks solution to display residual hoop stress field encircling a split-sleeve cold expanded aircraft fastener hole, Expert Syst Appl., 38, 553, 10.1016/j.eswa.2010.06.102 Na, 2007, Prediction of residual stress for dissimilar metals welding at nuclear power plants using fuzzy neural network models, Nucl Eng Technol., 39, 337, 10.5516/NET.2007.39.4.337 Yescas, 2001, Estimation of the amount of retained austenite in austempered ductile irons using neural networks, Mat. Sci Eng A., 311, 162, 10.1016/S0921-5093(01)00913-3 Rosenblatt, 1958, The perceptron: a probabilistic model for information storage and organization in the brain, Psychol Rev., 65, 386, 10.1037/h0042519 Møller, 1993, A scaled conjugate gradient algorithm for fast supervised learning, Neural Netw., 6, 525, 10.1016/S0893-6080(05)80056-5 Bellman, 1961 2012 Mackay, 1991 Pirling, 2006, SALSA, a new concept for strain mapping at the ILL, Mat. Sci Eng A., 437, 139, 10.1016/j.msea.2006.04.083 Manns, 2011, DECcalc - a software for the calculation of diffraction elastic constants from single crystal coefficients, Mat. Sci Forum, 681, 417, 10.4028/www.scientific.net/MSF.681.417 Pagliaro, 2011, Measuring inaccessible residual stresses using multiple methods and superposition, Exp Mech., 51, 1123, 10.1007/s11340-010-9424-5 Hosseinzadeh, 2012, Mapping multiple components of the residual stress tensor in a large P91 steel pipe girth weld using a single contour cut, Exp Mech., 53, 171, 10.1007/s11340-012-9627-z