A granular energy-controlled boundary condition for discrete element simulations of granular flows on erodible surfaces
Tài liệu tham khảo
Barker, 2022, Exact solutions for steady granular flow in vertical chutes and pipes, J. Fluid. Mech., 930, A21, 10.1017/jfm.2021.909
Berzi, 2020, Extended kinetic theory for granular flow over and within an inclined erodible bed, J. Fluid. Mech., 885, A27, 10.1017/jfm.2019.1017
Bi, 2005, Two- and three-dimensional confined granular chute flows: experimental and numerical results, J. Phys.: Condens. Matter., 17, S2457
Capart, 2015, Depth-integrated equations for entraining granular flows in narrow channels, J. Fluid Mech., 765, 10.1017/jfm.2014.713
Chialvo, 2012, Bridging the rheology of granular flows in three regimes, Phys. Rev. E., 85, 10.1103/PhysRevE.85.021305
da Cruz, 2005, Rheophysics of dense granular materials: discrete simulation of plane shear flows, Phys. Rev. E., 72, 10.1103/PhysRevE.72.021309
Daerr, 1999, Two types of avalanche behaviour in granular media, Nature, 399, 241, 10.1038/20392
de Ryck, 2010, Numerical and theoretical investigation of the surface flows of granular materials on heaps, Powder. Technol., 203, 125, 10.1016/j.powtec.2010.04.034
Edwards, 2015, Erosion–deposition waves in shallow granular free-surface flows, J. Fluid Mech., 762, 35, 10.1017/jfm.2014.643
Edwards, 2017, Formation of levees, troughs and elevated channels by avalanches on erodible slopes, J. Fluid Mech., 823, 278, 10.1017/jfm.2017.309
Hungr, 1995, A Model for the Runout Analysis of Rapid Flow Slides, Debris Flows, and Avalanches, Can. Geotech. J., 32, 610, 10.1139/t95-063
Hungr, 2004, Entrainment of debris in rock avalanches: An analysis of a long run-out mechanism, Geol. Soc. Am. Bull., 116, 1240, 10.1130/B25362.1
Iverson, 2015, Entrainment of bed material by Earth-surface mass flows: Review and reformulation of depth-integrated theory, Rev. Geophys., 53, 27, 10.1002/2013RG000447
Jop, 2005, Crucial role of sidewalls in granular surface flows: consequences for the rheology, J. Fluid. Mech., 541, 167, 10.1017/S0022112005005987
Kang, 2016, Runout and entrainment analysis of an extremely large rock avalanche—a case study of Yigong, Tibet, China, Landslides, 14, 123, 10.1007/s10346-016-0677-7
Kim, 2020, Power-law scaling in granular rheology across flow geometries, Phys. Rev. Lett., 125, 10.1103/PhysRevLett.125.088002
Köhler, 2016, The dynamics of surges in the 3 February 2015 avalanches in Vallée de la Sionne, J. Geophys. Res. Earth Surf., 121, 2192, 10.1002/2016JF003887
Komatsu, 2001, Creep motion in a granular pile exhibiting steady surface flow, Phys. Rev. Lett., 86, 1757, 10.1103/PhysRevLett.86.1757
Lai, 2021, Formation mechanism and evolution process of the Chada rock avalanche in Southeast Tibet, Landslides, 19, 331, 10.1007/s10346-021-01793-4
Liu, 2017, Non-local continuum modelling of steady, dense granular heap flows, J. Fluid. Mech., 831, 212, 10.1017/jfm.2017.554
Liu, 2019, Simulating the Xinmo landslide runout considering entrainment effect, Environ. Earth. Sci., 78, 585, 10.1007/s12665-019-8596-2
Lo, 2003, Debris-flow simulations for Tsing Shan in Hong Kong, 577
Mangeney, 2007, Avalanche mobility induced by the presence of an erodible bed and associated entrainment, Geophys. Res. Lett., 34, L22401, 10.1029/2007GL031348
MiDi, 2004, On dense granular flows, Eur. Phys. J. E., 14, 341, 10.1140/epje/i2003-10153-0
Ness, 2015, Flow regime transitions in dense non-Brownian suspensions: rheology, microstructural characterization, and constitutive modeling, Phys. Rev. E., 91, 10.1103/PhysRevE.91.012201
Pouliquen, 1999, Scaling laws in granular flows down rough inclined planes, Phys. Fluid, 11, 542, 10.1063/1.869928
Pouliquen, 2002, Friction law for dense granular flows: application to the motion of a mass down a rough inclined plane, J. Fluid Mech., 453, 133, 10.1017/S0022112001006796
Pouliquen, 1997, Fingering in granular flows, Nature, 386, 816, 10.1038/386816a0
Rocha, 2019, Self-channelisation and levee formation in monodisperse granular flows, J. Fluid Mech., 876, 591, 10.1017/jfm.2019.518
Roche, 2016, Slow-moving and far-travelled dense pyroclastic flows during the Peach Spring super-eruption, Nat. Commun., 7, 10890, 10.1038/ncomms10890
Roche, O., Niño, Y., 2013. Mangeney, A., Brand, B., Pollock, N., Valentine, G.A., Dynamic pore-pressure variations induce substrate erosion by pyroclastic flows. Geology. 41(10), 1107-1110. https://doi.org/10.1130/G34668.1.
Silbert, 2001, Granular flow down an inclined plane: Bagnold scaling and rheology, Phys. Rev. E., 64, 10.1103/PhysRevE.64.051302
Sovilla, 2006, Field experiments and numerical modeling of mass entrainment in snow avalanches, J. Geophys. Res. Earth Surf., 111, 10.1029/2005JF000391
Thompson, 2022, LAMMPS - A flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales, Comput. Phys. Commun., 271, 108171, 10.1016/j.cpc.2021.108171
Viroulet, 2019, Shedding dynamics and mass exchange by dry granular waves flowing over erodible beds, Earth Planet. Sci. Lett., 523, 10.1016/j.epsl.2019.07.003
Zhu, 2020, Solid-like and liquid-like granular flows on inclined surfaces under vibration - Implications for earthquake-induced landslides, Comput. Geotech., 123, 10.1016/j.compgeo.2020.103598