A granular energy-controlled boundary condition for discrete element simulations of granular flows on erodible surfaces

Computers and Geotechnics - Tập 154 - Trang 105115 - 2023
Chongqiang Zhu1,2, Yu Huang3, Jin Sun3,4
1School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK
2School of Science and Engineering, University of Dundee, Scotland DD1 4HN, UK
3Department of Geotechnical Engineering, College of civil engineering, Tongji University, Shanghai 200092, China
4School of Engineering, University of Edinburgh, Edinburgh EH9 3JL, UK

Tài liệu tham khảo

Barker, 2022, Exact solutions for steady granular flow in vertical chutes and pipes, J. Fluid. Mech., 930, A21, 10.1017/jfm.2021.909 Berzi, 2020, Extended kinetic theory for granular flow over and within an inclined erodible bed, J. Fluid. Mech., 885, A27, 10.1017/jfm.2019.1017 Bi, 2005, Two- and three-dimensional confined granular chute flows: experimental and numerical results, J. Phys.: Condens. Matter., 17, S2457 Capart, 2015, Depth-integrated equations for entraining granular flows in narrow channels, J. Fluid Mech., 765, 10.1017/jfm.2014.713 Chialvo, 2012, Bridging the rheology of granular flows in three regimes, Phys. Rev. E., 85, 10.1103/PhysRevE.85.021305 da Cruz, 2005, Rheophysics of dense granular materials: discrete simulation of plane shear flows, Phys. Rev. E., 72, 10.1103/PhysRevE.72.021309 Daerr, 1999, Two types of avalanche behaviour in granular media, Nature, 399, 241, 10.1038/20392 de Ryck, 2010, Numerical and theoretical investigation of the surface flows of granular materials on heaps, Powder. Technol., 203, 125, 10.1016/j.powtec.2010.04.034 Edwards, 2015, Erosion–deposition waves in shallow granular free-surface flows, J. Fluid Mech., 762, 35, 10.1017/jfm.2014.643 Edwards, 2017, Formation of levees, troughs and elevated channels by avalanches on erodible slopes, J. Fluid Mech., 823, 278, 10.1017/jfm.2017.309 Hungr, 1995, A Model for the Runout Analysis of Rapid Flow Slides, Debris Flows, and Avalanches, Can. Geotech. J., 32, 610, 10.1139/t95-063 Hungr, 2004, Entrainment of debris in rock avalanches: An analysis of a long run-out mechanism, Geol. Soc. Am. Bull., 116, 1240, 10.1130/B25362.1 Iverson, 2015, Entrainment of bed material by Earth-surface mass flows: Review and reformulation of depth-integrated theory, Rev. Geophys., 53, 27, 10.1002/2013RG000447 Jop, 2005, Crucial role of sidewalls in granular surface flows: consequences for the rheology, J. Fluid. Mech., 541, 167, 10.1017/S0022112005005987 Kang, 2016, Runout and entrainment analysis of an extremely large rock avalanche—a case study of Yigong, Tibet, China, Landslides, 14, 123, 10.1007/s10346-016-0677-7 Kim, 2020, Power-law scaling in granular rheology across flow geometries, Phys. Rev. Lett., 125, 10.1103/PhysRevLett.125.088002 Köhler, 2016, The dynamics of surges in the 3 February 2015 avalanches in Vallée de la Sionne, J. Geophys. Res. Earth Surf., 121, 2192, 10.1002/2016JF003887 Komatsu, 2001, Creep motion in a granular pile exhibiting steady surface flow, Phys. Rev. Lett., 86, 1757, 10.1103/PhysRevLett.86.1757 Lai, 2021, Formation mechanism and evolution process of the Chada rock avalanche in Southeast Tibet, Landslides, 19, 331, 10.1007/s10346-021-01793-4 Liu, 2017, Non-local continuum modelling of steady, dense granular heap flows, J. Fluid. Mech., 831, 212, 10.1017/jfm.2017.554 Liu, 2019, Simulating the Xinmo landslide runout considering entrainment effect, Environ. Earth. Sci., 78, 585, 10.1007/s12665-019-8596-2 Lo, 2003, Debris-flow simulations for Tsing Shan in Hong Kong, 577 Mangeney, 2007, Avalanche mobility induced by the presence of an erodible bed and associated entrainment, Geophys. Res. Lett., 34, L22401, 10.1029/2007GL031348 MiDi, 2004, On dense granular flows, Eur. Phys. J. E., 14, 341, 10.1140/epje/i2003-10153-0 Ness, 2015, Flow regime transitions in dense non-Brownian suspensions: rheology, microstructural characterization, and constitutive modeling, Phys. Rev. E., 91, 10.1103/PhysRevE.91.012201 Pouliquen, 1999, Scaling laws in granular flows down rough inclined planes, Phys. Fluid, 11, 542, 10.1063/1.869928 Pouliquen, 2002, Friction law for dense granular flows: application to the motion of a mass down a rough inclined plane, J. Fluid Mech., 453, 133, 10.1017/S0022112001006796 Pouliquen, 1997, Fingering in granular flows, Nature, 386, 816, 10.1038/386816a0 Rocha, 2019, Self-channelisation and levee formation in monodisperse granular flows, J. Fluid Mech., 876, 591, 10.1017/jfm.2019.518 Roche, 2016, Slow-moving and far-travelled dense pyroclastic flows during the Peach Spring super-eruption, Nat. Commun., 7, 10890, 10.1038/ncomms10890 Roche, O., Niño, Y., 2013. Mangeney, A., Brand, B., Pollock, N., Valentine, G.A., Dynamic pore-pressure variations induce substrate erosion by pyroclastic flows. Geology. 41(10), 1107-1110. https://doi.org/10.1130/G34668.1. Silbert, 2001, Granular flow down an inclined plane: Bagnold scaling and rheology, Phys. Rev. E., 64, 10.1103/PhysRevE.64.051302 Sovilla, 2006, Field experiments and numerical modeling of mass entrainment in snow avalanches, J. Geophys. Res. Earth Surf., 111, 10.1029/2005JF000391 Thompson, 2022, LAMMPS - A flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales, Comput. Phys. Commun., 271, 108171, 10.1016/j.cpc.2021.108171 Viroulet, 2019, Shedding dynamics and mass exchange by dry granular waves flowing over erodible beds, Earth Planet. Sci. Lett., 523, 10.1016/j.epsl.2019.07.003 Zhu, 2020, Solid-like and liquid-like granular flows on inclined surfaces under vibration - Implications for earthquake-induced landslides, Comput. Geotech., 123, 10.1016/j.compgeo.2020.103598