Development of delivery methods for carbohydrate-based drugs: controlled release of biologically-active short chain fatty acid-hexosamine analogs

Glycoconjugate Journal - Tập 27 - Trang 445-459 - 2010
Udayanath Aich1, M. Adam Meledeo2, Srinivasa-Gopalan Sampathkumar3, Jie Fu4, Mark B. Jones2, Christopher A. Weier2, Sung Yun Chung2, Benjamin C. Tang4, Ming Yang2, Justin Hanes4, Kevin J. Yarema2
1Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, USA
2Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, USA
3Laboratory of Chemical Glycobiology, National Institute of Immunology Aruna Asaf Ali Marg, New Delhi, India
4Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, USA

Tóm tắt

Carbohydrates are attractive candidates for drug development because sugars are involved in many, if not most, complex human diseases including cancer, immune dysfunction, congenital disorders, and infectious diseases. Unfortunately, potential therapeutic benefits of sugar-based drugs are offset by poor pharmacologic properties that include rapid serum clearance, poor cellular uptake, and relatively high concentrations required for efficacy. To address these issues, pilot studies are reported here where ‘Bu4ManNAc’, a short chain fatty acid-monosaccharide hybrid molecule with anti-cancer activities, was encapsulated in polyethylene glycol-sebacic acid (PEG-SA) polymers. Sustained release of biologically active compound was achieved for over a week from drug-laden polymer formulated into microparticles thus offering a dramatic improvement over the twice daily administration currently used for in vivo studies. In a second strategy, a tributanoylated ManNAc analog (3,4,6-O-Bu3ManNAc) with anti-cancer activities was covalently linked to PEG-SA and formulated into nanoparticles suitable for drug delivery; once again release of biologically active compound was demonstrated.

Tài liệu tham khảo

Liu, H., Zhang, Z., Linhardt, R.J.: Lessons learned from the contamination of heparin. Nat. Prod. Rep. 26, 313–321 (2009) Meutermans, W., Le, G.T., Becker, B.: Carbohydrates as scaffolds in drug discovery. ChemMedChem 1, 1164–1194 (2006) Elmouelhi, N., Aich, U., Paruchuri, V.D.P., Meledeo, M.A., Campbell, C.T., Wang, J.J., Srinivas, R., Khanna, H.S., Yarema, K.J.: Hexosamine template. A platform for modulating gene expression and for sugar-based drug discovery. J. Med. Chem. 52, 2515–2530 (2009) Kayser, H., Zeitler, R., Kannicht, C., Grunow, D., Nuck, R., Reutter, W.: Biosynthesis of a nonphysiological sialic acid in different rat organs, using N-propanoyl-D-hexosamines as precursors. J. Biol. Chem. 267, 16934–16938 (1992) Du, J., Meledeo, M.A., Wang, Z., Khanna, H.S., Paruchuri, V.D., Yarema, K.J.: Metabolic glycoengineering: Sialic acid and beyond. Glycobiology 19, 1382–1401 (2009) Sarkar, A.K., Fritz, T.A., Taylor, W.H., Esko, J.D.: Disaccharide uptake and priming in animal cells: inhibition of sialyl Lewis X by acetylated Gal β1, 4GlcNAc β-O-naphthalenemethanol. Proc. Natl. Acad. Sci. U.S.A. 92, 3323–3327 (1995) Kim, E.J., Sampathkumar, S.-G., Jones, M.B., Rhee, J.K., Baskaran, G., Yarema, K.J.: Characterization of the metabolic flux and apoptotic effects of O-hydroxyl- and N-acetylmannosamine (ManNAc) analogs in Jurkat (human T-lymphoma-derived) cells. J. Biol. Chem. 279, 18342–18352 (2004) Aich, U., Campbell, C.T., Elmouelhi, N., Weier, C.A., Sampathkumar, S.-G., Choi, S.S., Yarema, K.J.: Regioisomeric SCFA attachment to hexosamines separates metabolic flux from cytotoxcity and MUC1 suppression. ACS Chem. Biol. 3, 230–240 (2008) Campbell, C.T., Aich, U., Weier, C.A., Wang, J.J., Choi, S.S., Wen, M.M., Maisel, K., Sampathkumar, S.-G., Yarema, K.J.: Targeting pro-invasive oncogenes with short chain fatty acid-hexosamine analogs inhibits the mobility of metastatic MDA-MB-231 breast cancer cell. J. Med. Chem. 51, 8135–8147 (2008) Sampathkumar, S.-G., Jones, M.B., Meledeo, M.A., Campbell, C.T., Choi, S.S., Hida, K., Gomutputra, P., Sheh, A., Gilmartin, T., Head, S.R., Yarema, K.J.: Targeting glycosylation pathways and the cell cycle: sugar- dependent activity of butyrate-carbohydrate cancer prodrugs. Chem. Biol. 13, 1265–1275 (2006) Wang, Z., Du, J., Che, P.-L., Meledeo, M.A., Yarema, K.J.: Hexosamine analogs: from metabolic glycoengineering to drug discovery. Curr. Opin. Chem. Biol. 13, 565–572 (2009) Viswanathan, K., Lawrence, S., Hinderlich, S., Yarema, K.J., Lee, Y.C., Betenbaugh, M.: Engineering sialic acid synthetic ability into insect cells: identifying metabolic bottlenecks and devising strategies to overcome them. Biochemistry 42, 15215–15225 (2003) Campbell, C.T., Sampathkumar, S.-G., Weier, C., Yarema, K.J.: Metabolic oligosaccharide engineering: perspectives, applications, and future directions. Mol. Biosyst. 3, 187–194 (2007) Aich, U., Yarema, K.J.: Metabolic oligosaccharide engineering: perspectives, applications, and future directions. In: Fraser-Reid, B., Tatsuta, K., Thiem, J. (eds.) Glycosciences, 2nd edn, pp. 2136–2190. Springer-Verlag, Berlin (2008) Sarkar, A.K., Brown, J.R., Esko, J.D.: Synthesis and glycan priming activity of acetylated disaccharides. Carbohydr. Res. 329, 287–300 (2000) Gagiannis, D., Gossrau, R., Reutter, W., Zimmermann-Kordmann, M., Horstkorte, R.: Engineering the sialic acid in organs of mice using N-propanoylmannosamine. Biochim. Biophys. Acta 1770, 297–306 (2007) Fu, J., Fiegel, J., Krauland, E., Hanes, J.: New polymeric carriers for controlled drug delivery following inhalation or injection. Biomaterials 23, 4425–4433 (2002) Zhang, I., Gu, F.X., Chan, J.M., Wang, A.Z., Langer, R.S., Farokhzad, O.C.: Nanoparticles in medicine: therapeutic applications and developments. Clin. Pharmacol. Ther. 83, 761–769 (2008) Quick, D.J., Macdonald, K.K., Anseth, K.S.: Delivering DNA from photocrosslinked, surface eroding polyanhydrides. J. Control. Release 97, 333–343 (2004) Jones, M.B., Teng, H., Rhee, J.K., Baskaran, G., Lahar, N., Yarema, K.J.: Characterization of the cellular uptake and metabolic conversion of acetylated N-acetylmannosamine (ManNAc) analogues to sialic acids. Biotechnol. Bioeng. 85, 394–405 (2004) Tanner, M.E.: The enzymes of sialic acid biosynthesis. Bioorg. Chem. 33, 216–228 (2005) Luchansky, S.J., Yarema, K.J., Takahashi, S., Bertozzi, C.R.: GlcNAc 2-epimerase can serve a catabolic role in sialic acid metabolism. J. Biol. Chem. 278, 8036–8042 (2003) Sampathkumar, S.-G., Campbell, C.T., Weier, C., Yarema, K.J.: Short-chain fatty acid-hexosamine cancer prodrugs: the sugar matters! Drug. Future 31, 1099–1116 (2006) Lavis, L.D.: Ester bonds in prodrugs. ACS Chem. Biol. 3, 203–206 (2008) Luchansky, S.J., Argade, S., Hayes, B.K., Bertozzi, C.R.: Metabolic functionalization of recombinant glycoproteins. Biochemistry 43, 12358–12366 (2004) Whalen, M.M., Wild, G.C., Spall, W.D., Sebring, R.J.: Separation of underivatized gangliosides by ion exchange high performance liquid chromatography. Lipids 21, 267–270 (1986) Kim, E.J., Jones, M.B., Rhee, J.K., Sampathkumar, S.-G., Yarema, K.J.: Establishment of N-acetylmannosamine (ManNAc) analogue-resistant cell lines as improved hosts for sialic acid engineering applications. Biotechnol. Prog. 20, 1674–1682 (2004) Jourdian, G.W., Dean, L., Roseman, S.: The sialic acids. XI. A periodate-resorcinol method for the quantitative estimation of free sialic acids and their glycosides. J. Biol. Chem. 246, 430–435 (1971) Yarema, K.J., Goon, S., Bertozzi, C.R.: Metabolic selection of glycosylation defects in human cells. Nat. Biotechnol. 19, 553–558 (2001)