The solubility and speciation of molybdenum in water vapour at elevated temperatures and pressures: Implications for ore genesis

Geochimica et Cosmochimica Acta - Tập 70 - Trang 687-696 - 2006
K.U. Rempel1, A.A. Migdisov1, A.E. Williams-Jones1
1McGill University, 3450 University St., Montreal, Que., Canada H3A 2A7

Tài liệu tham khảo

Anderson, 1993 Archibald, 2001, The stability of Au-chloride complexes in water vapor at elevated temperatures and pressures, Geochim. Cosmochim. Acta, 65, 4413, 10.1016/S0016-7037(01)00730-X Archibald, 2002, An experimental study of the stability of copper chloride complexes in water vapor at elevated temperatures and pressures, Geochim. Cosmochim. Acta, 66, 1611, 10.1016/S0016-7037(01)00867-5 Belton, 1965, The volatilization of molybdenum in the presence of water vapor, J. Phys. Chem., 69, 2065, 10.1021/j100890a043 Boeschen, 1974, Crystal structure of white molybdic acid, α-MoO3·H2O, Acta Crystallogr., 30, 1795 Buiten, 1968, Oxidation of propylene by means of SnO2–MoO3 catalysts: I. The effect of combining SnO2 and MoO3, J. Catal., 10, 188, 10.1016/0021-9517(68)90172-3 Burnham, 1979, Magmas and hydrothermal fluids Chase, M.W., 1998. NIST-JANAF thermochemical Tables. fourth ed., J. Phys. Chem. Ref. Data, Monograph 9, 1951 pp. Christiansen, R.L., 1984. Yellowstone magmatic evolution: its bearing on understanding large-volume explosive volcanism. In: Studies in Geophysics: Explosive Volcanism: Inception, Evolution, and Hazards. National Academic Press, Washington, DC, pp. 84–95. Eastoe, 1982, Physics and chemistry of the hydrothermal system at the Pangua porphyry deposit, Bougainville, Papua New Guinea, Econ. Geol., 77, 127, 10.2113/gsecongeo.77.1.127 Elliott, R.B., 1952. Gaseous hydrated oxides, hydroxides, and other hydrated molecules. PhD. Thesis, University of California, Radiation Laboratory Report 1831, 52 pp. Glemser, 1962, Gaseous hydroxides, IV: gaseous hydroxides of molybdenum and tungsten, Z. Anorg. Allgem. Chem., 316, 168, 10.1002/zaac.19623160309 Heinrich, 1992, Segregation of ore metals between magmatic brine and vapor: a fluid inclusion study using PIXE Microanalysis, Econ. Geol., 87, 1566, 10.2113/gsecongeo.87.6.1566 Heinrich, 1999, Metal fractionation between magmatic brine and vapor, determined by microanalysis of fluid inclusions, Geology, 27, 755, 10.1130/0091-7613(1999)027<0755:MFBMBA>2.3.CO;2 Henley, 1978, Magmatic vapor plumes and ground-water interaction in porphyry copper emplacement, Econ. Geol., 73, 1, 10.2113/gsecongeo.73.1.1 Kestin, 1984, Thermophysical properties of fluid water, J. Phys. Chem. Ref. Data, 13, 175, 10.1063/1.555707 Krebs, 1972, Crystal structure of molybdenum trioxide dihydrate, Acta Crystallogr., 28, 2222, 10.1107/S0567740872005849 Messaoudi, 2004, A density functional study of the dimerization mechanisms of molybdenum(vi) in aqueous solution, Phys. Chem., 6, 2083, 10.1039/b316760g Migdisov, 2005, An experimental study of cassiterite solubility in HCl-bearing water vapor at temperatures up to 350°C: implications for tin ore formation, Chem. Geol., 217, 29, 10.1016/j.chemgeo.2004.11.018 Millner, 1949, Volatility of the oxides of tungsten and molybdenum in the presence of water vapour, Nature, 163, 601, 10.1038/163601b0 Mosselmans, 1996, X-ray absorption studies of metal complexes in aqueous solution at elevated temperatures, Chem. Geol., 127, 339, 10.1016/0009-2541(95)00178-6 Nadeau, O., Williams-Jones, A.E., 2004. The compositions of high-temperature fumarolic gases at Merapi volcano, Indonesia. Unpublished data. Ozeki, 1996, Estimation of the dissolved structures and condensation reactivities of mononuclear molybdenum(VI) species in solution using UV–vis absorption spectra and molecular orbital calculation DV-Xα, Bull. Chem. Soc. Japan, 69, 619, 10.1246/bcsj.69.619 Pankratz, L.B., 1982. Thermodynamic Properties of Elements and Oxides. United States Bureau of Mines, Bulletin 672, 509 pp. Pankratz, L.B., Mah, A.D., Watson, S.W., 1987. Thermodynamic Properties of Sulfides. United States Bureau of Mines, Bulletin 689, 427 pp. Reynolds, 1985, Evolution of hydrothermal fluid characteristics at the Santa Rita, New Mexico porphyry deposit, Econ. Geol., 80, 1328, 10.2113/gsecongeo.80.5.1328 Robie, R.A., Bethke, P.M., Toulmin, M.S., Edwards, J.L., 1966. X-ray crystallography data, densities, and molar volumes of minerals. In: Clark, S.P. (Ed.), Handbook of Physical Constants, revised ed. GSA memoir 97, pp. 437–458. Saito, 2001, Variation of volatile concentration in a magma system of Satsuma-Iwojima volcano deduced from melt inclusion analyses, J. Volcanol. Geotherm. Res., 108, 11, 10.1016/S0377-0273(00)00276-6 Sandler, 1989 Sardi, 1963, Contributions to the reduction of Mo trioxide, II. Appearance of oxides phases between Mo trioxide and Mo dioxide during reduction of Mo trioxide by a flowing gas mixture containing hydrogen and water, Acta Chim. Acad. Sci. Hung., 39, 145 Silberman, 1975, Limits on duration of hydrothermal activity at Steamboat Springs, Nevada, by K–Ar ages of spatially distributed associated altered and unaltered volcanic rocks, Econ. Geol., 70, 1329 Tytko, 1987, What is “molybdic acid” or “polymolybdic acid”?, Z. Anorg. Allg. Chem., 555, 98, 10.1002/zaac.19875551211 Ulrich, 1999, Gold concentrations of magmatic brines and the metal budget of porphyry copper deposits, Nature, 399, 676, 10.1038/21406 White, 1981, Character and origin of Climax-type molybdenum deposits, Econ. Geol., 75th Anniversary Volume, 270 Williams-Jones, A.E., Migdisov, A.A., Archibald, S.M., Xiao, Z., 2002. Vapor-transport of ore metals. In: Hellmann, R., Wood, S.A. (Eds.), Water–Rock Interaction, Ore Deposits, and Environmental Geochemistry: A Tribute to David A. Crerar. The Geochemical Society, Special Publication No. 7, pp. 279–305. Yokoi, 1993, Studies on the structure of molybdenum(VI) in acidic solution by XANES and EXAFS, Polyhedron, 12, 911, 10.1016/S0277-5387(00)81545-4