Rab7 of Plasmodium falciparum is involved in its retromer complex assembly near the digestive vacuole
Tài liệu tham khảo
Goldberg, 1990, Hemoglobin degradation in the malaria parasite Plasmodium falciparum: an ordered process in a unique organelle, Proc. Natl. Acad. Sci. U. S. A., 87, 2931, 10.1073/pnas.87.8.2931
Olliaro, 1995, The Plasmodium digestive vacuole: metabolic headquarters and choice drug target, Parasitol. Today, 11, 294, 10.1016/0169-4758(95)80042-5
Alam, 2009, Novel antimalarial drug targets: hope for new antimalarial drugs, Expert. Rev. Clin. Pharmacol., 2, 469, 10.1586/ecp.09.28
Bandyopadhyay, 2011, Antimalarial drugs and molecules inhibiting hemozoin formation, 205
Vaidya, 2009, Mitochondrial evolution and functions in malaria parasites, Annu. Rev. Microbiol., 63, 249, 10.1146/annurev.micro.091208.073424
Sun, 2016, Identification of endoplasmic reticulum-shaping proteins in Plasmodium parasites, Protein Cell, 7, 615, 10.1007/s13238-016-0290-5
Struck, 2008, Spatial dissection of the cis- and trans-Golgi compartments in the malaria parasite Plasmodium falciparum, Mol. Microbiol., 67, 1320, 10.1111/j.1365-2958.2008.06125.x
Rosenthal, 2004, Cysteine proteases of malaria parasites, Int. J. Parasitol., 34, 1489, 10.1016/j.ijpara.2004.10.003
Francis, 1997, Hemoglobin metabolism in the malaria parasite Plasmodium falciparum, Annu. Rev. Microbiol., 51, 97, 10.1146/annurev.micro.51.1.97
Milani, 2015, Defining the morphology and mechanism of the hemoglobin transport pathway in Plasmodium falciparum-infected erythrocytes, Eukaryot. Cell, 14, 415, 10.1128/EC.00267-14
Abu Bakar, 2010, Digestive-vacuole genesis and endocytic processes in the early intraerythrocytic stages of Plasmodium falciparum, J. Cell Sci., 123, 441, 10.1242/jcs.061499
Deponte, 2012, Wherever I may roam: protein and membrane trafficking in P. falciparum-infected red blood cells, Mol. Biochem. Parasitol., 186, 95, 10.1016/j.molbiopara.2012.09.007
Elliott, 2008, Four distinct pathways of hemoglobin uptake in the malaria parasite Plasmodium falciparum, Proc. Natl. Acad. Sci. U. S. A., 105, 2463, 10.1073/pnas.0711067105
Hutagalung, 2011, Role of Rab GTPases in membrane traffic and cell physiology, Physiol. Rev., 91, 119, 10.1152/physrev.00059.2009
Wennerberg, 2005, The Ras superfamily at a glance, J. Cell Sci., 118, 843, 10.1242/jcs.01660
Zhen, 2015, Cellular functions of Rab GTPases at a glance, J. Cell Sci., 128, 3171, 10.1242/jcs.166074
Zerial, 2001, Rab proteins as membrane organizers, Nat. Rev. Mol. Cell Biol., 2, 107, 10.1038/35052055
Lee, 2009, Structural mechanisms for regulation of membrane traffic by rab GTPases, Traffic (Copenhagen, Denmark)., 10, 1377, 10.1111/j.1600-0854.2009.00942.x
Leung, 2006, Thematic review series: lipid posttranslational modifications. Geranylgeranylation of Rab GTPases, J. Lipid Res., 47, 467, 10.1194/jlr.R500017-JLR200
Chavrier, 1990, Localization of low molecular weight GTP binding proteins to exocytic and endocytic compartments, Cell, 62, 317, 10.1016/0092-8674(90)90369-P
Jambou, 1996, Small GTP-binding proteins in Plasmodium falciparum, Biol. Cell., 88, 113, 10.1111/j.1768-322X.1996.tb00985.x
Priya, 2015, Molecular insights into Rab7-mediated endosomal recruitment of core retromer: deciphering the role of Vps26 and Vps35, Traffic (Copenhagen, Denmark), 16, 68, 10.1111/tra.12237
Rojas, 2008, Regulation of retromer recruitment to endosomes by sequential action of Rab5 and Rab7, J. Cell Biol., 183, 513, 10.1083/jcb.200804048
Purushothaman, 2017, Retromer-driven membrane tubulation separates endosomal recycling from Rab7/Ypt7-dependent fusion, Mol. Biol. Cell, 28, 783, 10.1091/mbc.e16-08-0582
Liu, 2012, Rab GTPase regulation of retromer-mediated cargo export during endosome maturation, Mol. Biol. Cell, 23, 2505, 10.1091/mbc.e11-11-0915
Krai, 2014, Evidence for a Golgi-to-endosome protein sorting pathway in Plasmodium falciparum, PLoS One, 9, 10.1371/journal.pone.0089771
Burd, 2014, Retromer: a master conductor of endosome sorting, Cold Spring Harb. Perspect. Biol., 6, 10.1101/cshperspect.a016774
Gallon, 2015, Retromer and sorting nexins in endosomal sorting, Biochem. Soc. Trans., 43, 33, 10.1042/BST20140290
Mukadam, 2015, Retromer-mediated endosomal protein sorting: the role of unstructured domains, FEBS Lett., 589, 2620, 10.1016/j.febslet.2015.05.052
Chen, 2019, Towards a molecular understanding of endosomal trafficking by Retromer and Retriever, Traffic, 20, 465, 10.1111/tra.12649
Zhang, 2009, I-TASSER: fully automated protein structure prediction in CASP8, Proteins, 77, 100, 10.1002/prot.22588
Yang, 2015, I-TASSER server: new development for protein structure and function predictions, Nucleic Acids Res., 43, W174, 10.1093/nar/gkv342
Alam, 2011, Cysteine-3 and cysteine-4 are essential for the thioredoxin-like oxidoreductase and antioxidant activities of Plasmodium falciparum macrophage migration inhibitory factor, Free Radic. Biol. Med., 50, 1659, 10.1016/j.freeradbiomed.2011.03.012
Iqbal, 2016, Expression, purification and characterization of Plasmodium falciparum vacuolar protein sorting 29, Protein Expr. Purif., 120, 7, 10.1016/j.pep.2015.12.004
Dery, 2015, An improved SYBR Green-1-based fluorescence method for the routine monitoring of Plasmodium falciparum resistance to anti-malarial drugs, Malar. J., 14, 10.1186/s12936-015-1011-x
Sarkar, 2016, Antimalarial activity of small-molecule benzothiazole hydrazones, Antimicrob. Agents Chemother., 60, 4217, 10.1128/AAC.01575-15
Saha, 2019, Hydrazonophenol, a food vacuole-targeted and ferriprotoporphyrin IX-interacting chemotype prevents drug-resistant malaria, ACS Infect Dis., 5, 63, 10.1021/acsinfecdis.8b00178
Sarkar, 2015, Ellagic acid, a dietary polyphenol, inhibits tautomerase activity of human macrophage migration inhibitory factor and its pro-inflammatory responses in human peripheral blood mononuclear cells, J. Agric. Food Chem., 63, 4988, 10.1021/acs.jafc.5b00921
Iqbal, 2018, Detection of retromer assembly in Plasmodium falciparum by immunosensing coupled to Surface Plasmon Resonance, Biochim. Biophys. Acta Proteins Proteomics, 1866, 722, 10.1016/j.bbapap.2018.04.005
Sullivan, 1996, On the molecular mechanism of chloroquine’s antimalarial action, Proc. Natl. Acad. Sci. U. S. A., 93, 11865, 10.1073/pnas.93.21.11865
Srivastava, 1997, Atovaquone, a broad spectrum antiparasitic drug, collapses mitochondrial membrane potential in a malarial parasite, J. Biol. Chem., 272, 3961, 10.1074/jbc.272.7.3961
Pan, 2006, TBC-domain GAPs for Rab GTPases accelerate GTP hydrolysis by a dual-finger mechanism, Nature, 442, 303, 10.1038/nature04847
Simon, 1996, Kinetics of interaction of Rab5 and Rab7 with nucleotides and magnesium ions, J. Biol. Chem., 271, 20470, 10.1074/jbc.271.34.20470
Agola, 2012, A competitive nucleotide binding inhibitor: in vitro characterization of Rab7 GTPase inhibition, ACS Chem. Biol., 7, 1095, 10.1021/cb3001099
Struck, 2008, Plasmodium falciparum possesses two GRASP proteins that are differentially targeted to the Golgi complex via a higher- and lower-eukaryote-like mechanism, J. Cell Sci., 121, 2123, 10.1242/jcs.021154
Struck, 2005, Re-defining the Golgi complex in Plasmodium falciparum using the novel Golgi marker PfGRASP, J. Cell Sci., 118, 5603, 10.1242/jcs.02673
Hallée, 2018, Evidence that the Plasmodium falciparum protein sortilin potentially acts as an escorter for the trafficking of the rhoptry-associated membrane antigen to the rhoptries, MSphere, 3, 10.1128/mSphere.00551-17
Sloves, 2012, Toxoplasma sortilin-like receptor regulates protein transport and is essential for apical secretory organelle biogenesis and host infection, Cell Host Microbe, 11, 515, 10.1016/j.chom.2012.03.006
Aurrecoechea, 2009, PlasmoDB: a functional genomic database for malaria parasites, Nucleic Acids Res., 37, D539, 10.1093/nar/gkn814
Rached, 2012, Construction of a Plasmodium falciparum Rab-interactome identifies CK1 and PKA as Rab-effector kinases in malaria parasites, Biol. Cell., 104, 34, 10.1111/boc.201100081
Ben-Rached, 2013, 1
Seaman, 2009, Membrane recruitment of the cargo-selective retromer subcomplex is catalysed by the small GTPase Rab7 and inhibited by the Rab-GAP TBC1D5, J. Cell Sci., 122, 2371, 10.1242/jcs.048686
Suazo, 2016, Global proteomic analysis of prenylated proteins in Plasmodium falciparum using an alkyne-modified isoprenoid analogue, Sci. Rep., 6, 10.1038/srep38615
Modica, 2017, Rab7 palmitoylation is required for efficient endosome-to-TGN trafficking, J. Cell Sci., 130, 2579, 10.1242/jcs.199729
Jones, 2012, Analysis of protein palmitoylation reveals a pervasive role in Plasmodium development and pathogenesis, Cell Host Microbe, 12, 246, 10.1016/j.chom.2012.06.005
Sangaré, 2016, Unconventional endosome-like compartment and retromer complex in toxoplasma gondii govern parasite integrity and host infection, Nat. Commun., 7, 10.1038/ncomms11191
Rug, 2012, Transfection of Plasmodium falciparum, 75, 10.1007/978-1-62703-026-7_6
Ch’Ng, 2011, Drug-induced permeabilization of parasite’s digestive vacuole is a key trigger of programmed cell death in Plasmodium falciparum, Cell Death Dis., 2, e216, 10.1038/cddis.2011.97
Hoppe, 2004, Antimalarial quinolines and artemisinin inhibit endocytosis in Plasmodium falciparum, Antimicrob. Agents Chemother., 48, 2370, 10.1128/AAC.48.7.2370-2378.2004
Tomlins, 2013, Plasmodium falciparum ATG8 implicated in both autophagy and apicoplast formation, Autophagy, 9, 1540, 10.4161/auto.25832
Spinosa, 2008, Functional characterization of Rab7 mutant proteins associated with Charcot-Marie-Tooth type 2B disease, J. Neurosci., 28, 1640, 10.1523/JNEUROSCI.3677-07.2008
Lin, 2019, Hepatitis B virus is degraded by autophagosome-lysosome fusion mediated by Rab7 and related components, Protein Cell, 10, 60, 10.1007/s13238-018-0555-2
Ezougou, 2014, Plasmodium falciparum Rab5B is an N-terminally MYRISTOYLATED Rab GTPase that is targeted to the parasite’s plasma and food vacuole membranes, PLoS One, 9, 10.1371/journal.pone.0087695
Lamarque, 2008, Food vacuole proteome of the malarial parasite Plasmodium falciparum, Proteomics Clin. Appl., 2, 1361, 10.1002/prca.200700112
Bucci, 2000, Rab7: a key to lysosome biogenesis, Mol. Biol. Cell, 11, 467, 10.1091/mbc.11.2.467