Identification of cryptolepine metabolites in rat and human hepatocytes and metabolism and pharmacokinetics of cryptolepine in Sprague Dawley rats

Springer Science and Business Media LLC - Tập 18 - Trang 1-9 - 2017
Arnold Donkor Forkuo1, Charles Ansah1, David Pearson2, Werner Gertsch3, Amanda Cirello4, Adam Amaral5, Jaimie Spear5, Colin W. Wright6, Caroline Rynn7
1Department of Pharmacology, Faculty of Pharmacy and Pharmaceutical Science, College of Health Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
2Drug Metabolism and Pharmacokinetics, Novartis Institutes for Biomedical Research, Basel, Switzerland
3Analytical Sciences and Imaging, Novartis Institutes for BioMedical Research, Basel, Switzerland
4Analytical Sciences and Imaging, Novartis Institutes for BioMedical Research, Cambridge, USA
5Metabolism and Pharmacokinetics, Novartis Institutes for BioMedical Research, Cambridge, USA
6School of Pharmacy, University of Bradford, Bradford, USA
7Metabolism and Pharmacokinetics, Novartis Institute for BioMedical Research, Basel, Switzerland

Tóm tắt

This study aims at characterizing the in vitro metabolism of cryptolepine using human and rat hepatocytes, identifying metabolites in rat plasma and urine after a single cryptolepine dose, and evaluating the single-dose oral and intravenous pharmacokinetics of cryptolepine in male Sprague Dawley (SD) rats. The in vitro metabolic profiles of cryptolepine were determined by LC-MS/MS following incubation with rat and human hepatocytes. The in vivo metabolic profile of cryptolepine was determined in plasma and urine samples from Sprague Dawley rats following single-dose oral administration of cryptolepine. Pharmacokinetic parameters of cryptolepine were determined in plasma and urine from Sprague Dawley rats after single-dose intravenous and oral administration. Nine metabolites were identified in human and rat hepatocytes, resulting from metabolic pathways involving oxidation (M2-M9) and glucuronidation (M1, M2, M4, M8, M9). All human metabolites were found in rat hepatocyte incubations except glucuronide M1. Several metabolites (M2, M6, M9) were also identified in the urine and plasma of rats following oral administration of cryptolepine. Unchanged cryptolepine detected in urine was negligible. The Pharmacokinetic profile of cryptolepine showed a very high plasma clearance and volume of distribution (Vss) resulting in a moderate average plasma half-life of 4.5 h. Oral absorption was fast and plasma exposure and oral bioavailability were low. Cryptolepine metabolism is similar in rat and human in vitro with the exception of direct glucuronidation in human. Clearance in rat and human is likely to include a significant metabolic contribution, with proposed primary human metabolism pathways hydroxylation, dihydrodiol formation and glucuronidation. Cryptolepine showed extensive distribution with a moderate half-life.

Tài liệu tham khảo

Breman JG, Alilio MS, Al M. Conquering the intolerable burden of malaria: What's new. What's Needed: A Summary Am J Trop Med Hyg. 2004;71:1–15. Snow RW, Guerra CA, Noor AM, Myint HY, Hay SI. The global distribution of clinical episodes of Plasmodium falciparum malaria. Nature. 2005;434:214–7. World Malaria report, 2015: Geneva, World Health Organization, 2015. Pages 8–9. Lavrado J, Moreira R, Paulo A. Indoloquinolines as scaffolds for drug discovery. Curr Med Chem. 2010;17:2348–70. Phillipson JD, Wright CW, Kirby GC, and Warhurst DC (1993) Tropical plants as sources of antiprotozoal agents. In Recent Advances in Phytochemistry, Phytochemical Potential of Tropical Plants, ed by KR Downum, JT Romeo and H A Stafford, Vol 27, pp. 1–40. Plenum Press, New York. Boakye-Yiadom K. The antimicrobial activity of some west African medicinal plants. 0. J. Crude Drug Res. 1979;2:78–80. Boye GL, Oku-Ampofo(1983) Clinical uses of Cryptolepis sanguinolenta. Proceedings of the First International Seminar on Cryptolepine, 27-30 July 1983, University of Science and Technology, Kumasi, Ghana, pp. 37–40. Boye GL, Oku-Ampofo (1990) the role of plants and traditional medicine in primary health care in Ghana. In economic and medicinal plant research; Vol. 4 ed. by H. Wagner and N. R. Farnsworth, academic press, London. Bugyei KA, Boye GL, Addy ME. Clinical efficacy of a tea-bag formulation of cryptolepis sanguinolenta root in the treatment of acute uncomplicated falciparum malaria. Ghana Med J. 2010;44:3–9. Cimanga K, De Bruyne T, Pieters L, Vlietinck AJ, Turger CA. In vitro and in vivo antiplasmodial activity of cryptolepine and related alkaloids from Cryptolepis sanguinolenta. J Nat Prod. 1997;60:688–91. Stell JGP, Wheelhouse RT, Wright CW. Metabolism of Cryptolepine and 2-Fluorocryptolepine by aldehyde oxidase. J Pharm Pharmacol. 2012;64:237–43. Zhang X, Liu HH, Weller P, Zheng M, Tao W, Wang J, Liao G, Monshouwer M, Peltz G. In silico and in vitro pharmacogenetics: aldehyde oxidase rapidly metabolizes a p38 kinase inhibitor. Pharmacogenomics J. 2011;11:15–24. Salako Q, Ablordeppey SY, Dwuma-Badu D, Thornback FR. Radioiodination and preliminary in vivo investigation of the alkaloid cryptolepine. Int J APPL Radiat Isot. 1985;36:1003–4. Noamesi BK, Larsson BS, Laryea DL, Ullberg S. Whole-body autoradiographic study on the distribution of 3h-cryptolepine in mice. Arch Int Pharmacodyn Ther. 1991;313:5–14. McCurrie J, Albalawi S, Wright C, Kuntworbe N. Investigation of the absorption and vascular effects of the indoloquinoline alkaloid, cryptolepine. J Pharm Pharmacol. 2009;61:A67. Kuntworbe N, Ofori M, Addo P, Tingle M, Al-kassas R. Pharmacokinetics and in vivo chemosuppressive activity studies on cryptolepine hydrochloride and cryptolepine-loaded gelatine nanoformulation designed for parenteral administration for the treatment of malaria. Acta Trop. 2013;127:165–73. Hamilton RA, Garnett WR, Kline BJ. Determination of mean valproic acid serum level by assay of a single pooled sample. Clin Pharmacol Ther. 1981;29:408–13. Fabre G, Combalbert J, Berger Y, Cano JP. Human hepatocytes as a key in vitro model to improve preclinical drug development. Eur J Drug Metab Pharmacokinet. 1990;15:165–71. Di L. The role of drug metabolism enzymes in clearance expert Opin. Drug Metab Toxicol. 2014;10:379–93. Smith DA, Obach RS. Metabolites and safety: what are the concerns, and how should we address them? Chem Res Toxicol. 2006;19:1570–9. Benet LZ, Broccatelli F, Oprea TI. BDDCS applied to over 900 drugs. AAPS J. 2011;13(4):519–47. Camenisch G. Drug disposition classification Systems in Discovery and Development: a comparative review of the BDDCS, ECCS and ECCCS concepts. Pharm Res. 2016;33(11):2583–93. Roffey SJ, Obach RS, Gedge JI, Smith DA. What is the objective of the mass balance study? A retrospective analysis of data in animal and human excretion studies employing radiolabelled drugs. Drug Metab Rev. 2007;39:17–43. Egan TJ, Hunter R, Kaschula CH, Marques HM, Misplon A, Walden J. Structure−function relationships in aminoquinolines: effect of amino and chloro groups on quinoline−hematin complex formation, inhibition of β-hematin formation, and antiplasmodial activity. J Med Chem. 1999;43:283–91.