In-process monitoring and prediction of droplet quality in droplet-on-demand liquid metal jetting additive manufacturing using machine learning

Journal of Intelligent Manufacturing - Tập 33 - Trang 2093-2117 - 2022
Aniruddha Gaikwad1, Tammy Chang2, Brian Giera2, Nicholas Watkins2, Saptarshi Mukherjee2, Andrew Pascall2, David Stobbe2, Prahalada Rao1,3
1Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, USA
2Lawrence Livermore National Laboratory, Livermore, USA
3Grado Department of Industrial and Systems Engineering, Virginia Tech, Blacksburg, USA

Tóm tắt

In droplet-on-demand liquid metal jetting (DoD-LMJ) additive manufacturing, complex physical interactions govern the droplet characteristics, such as size, velocity, and shape. These droplet characteristics, in turn, determine the functional quality of the printed parts. Hence, to ensure repeatable and reliable part quality it is necessary to monitor and control the droplet characteristics. Existing approaches for in-situ monitoring of droplet behavior in DoD-LMJ rely on high-speed imaging sensors. The resulting high volume of droplet images acquired is computationally demanding to analyze and hinders real-time control of the process. To overcome this challenge, the objective of this work is to use time series data acquired from an in-process millimeter-wave sensor for predicting the size, velocity, and shape characteristics of droplets in DoD-LMJ process. As opposed to high-speed imaging, this sensor produces data-efficient time series signatures that allows rapid, real-time process monitoring. We devise machine learning models that use the millimeter-wave sensor data to predict the droplet characteristics. Specifically, we developed multilayer perceptron-based non-linear autoregressive models to predict the size and velocity of droplets. Likewise, a supervised machine learning model was trained to classify the droplet shape using the frequency spectrum information contained in the millimeter-wave sensor signatures. High-speed imaging data served as ground truth for model training and validation. These models captured the droplet characteristics with a statistical fidelity exceeding 90%, and vastly outperformed conventional statistical modeling approaches. Thus, this work achieves a practically viable sensing approach for real-time quality monitoring of the DoD-LMJ process, in lieu of the existing data-intensive image-based techniques.

Tài liệu tham khảo

Abiodun, O. I., Jantan, A., Omolara, A. E., Dada, K. V., Mohamed, N. A., & Arshad, H. (2018). State-of-the-art in artificial neural network applications: A survey. Heliyon, 4, e00938–e00938. https://doi.org/10.1016/j.heliyon.2018.e00938 Amirzadeh, A., Raessi, M., & Chandra, S. (2013). Producing molten metal droplets smaller than the nozzle diameter using a pneumatic drop-on-demand generator. Experimental Thermal and Fluid Science, 47, 26–33. https://doi.org/10.1016/j.expthermflusci.2012.12.006 Beck, V. A., Watkins, N. N., Ashby, A. S., Martin, A. A., Paul, P. H., Jeffries, J. R., & Pascall, A. J. (2020). A combined numerical and experimental study to elucidate primary breakup dynamics in liquid metal droplet-on-demand printing. Physics of Fluids, 32, 112020. https://doi.org/10.1063/5.0029438 Brockwell, P. J., & Davis, R. A. (2016). Introduction to time series and forecasting. Springer. Castrejón-Pita, J. R., Martin, G. D., Hoath, S. D., & Hutchings, I. M. (2008). A simple large-scale droplet generator for studies of inkjet printing. Review of Scientific Instruments, 79, 075108. https://doi.org/10.1063/1.2957744 Chang, T., Mukherjee, S., Watkins, N. N., Stobbe, D. M., Mays, O., Baluyot, E. V., Pascall, A. J., & Tringe, J. W. (2020). In-situ monitoring for liquid metal jetting using a millimeter-wave impedance diagnostic. Scientific Reports, 10, 22325. https://doi.org/10.1038/s41598-020-79266-2 Chang, T., Mukherjee, S., Watkins, N. N., Benavidez, E., Gilmore, A. M., Pascall, A. J., & Stobbe, D. M. (2021). Millimeter-wave electromagnetic monitoring for liquid metal droplet-on-demand printing. Journal of Applied Physics, 130, 144502. https://doi.org/10.1063/5.0065989 Chartrand, G., Cheng, P. M., Vorontsov, E., Drozdzal, M., Turcotte, S., Pal, C. J., Kadoury, S., & Tang, A. (2017). Deep learning: A primer for radiologists. Radiographics, 37, 2113–2131. https://doi.org/10.1148/rg.2017170077 Cheng, S. X., Li, T., & Chandra, S. (2005). Producing molten metal droplets with a pneumatic droplet-on-demand generator. Journal of Materials Processing Technology, 159, 295–302. https://doi.org/10.1016/j.jmatprotec.2004.05.016 Dobson, A. J., & Barnett, A. G. (2018). An introduction to generalized linear models. CRC Press. Gaikwad, A., Giera, B., Guss, G. M., Forien, J.-B., Matthews, M. J., & Rao, P. (2020). Heterogeneous sensing and scientific machine learning for quality assurance in laser powder bed fusion—a single-track study. Additive Manufacturing, 36, 101659. https://doi.org/10.1016/j.addma.2020.101659 Gerdes, B., Zengerle, R., Koltay, P., & Riegger, L. (2018). Direct printing of miniscule aluminum alloy droplets and 3D structures by StarJet technology. Journal of Micromechanics and Microengineering, 28, 074003. https://doi.org/10.1088/1361-6439/aab928 Han, Y., & Dong, J. (2017a). High-resolution direct printing of molten-metal using electrohydrodynamic jet plotting. Manufacturing Letters, 12, 6–9. https://doi.org/10.1016/j.mfglet.2017.04.001 Han, Y., & Dong, J. (2017b). High-resolution electrohydrodynamic (EHD) direct printing of molten metal. Procedia Manufacturing, 10, 845–850. https://doi.org/10.1016/j.promfg.2017.07.070 Idell, Y., Watkins, N., Pascall, A., Jeffries, J., & Blobaum, K. (2019). Microstructural characterization of pure tin produced by the drop-on-demand technique of liquid metal jetting. Metallurgical and Materials Transactions A, 50, 4000–4005. https://doi.org/10.1007/s11661-019-05357-z Imani, F., Gaikwad, A., Montazeri, M., Rao, P., Yang, H., & Reutzel, E. (2018). Process mapping and in-process monitoring of porosity in laser powder bed fusion using layerwise optical imaging. Journal of Manufacturing Science and Engineering, 10(1115/1), 4040615. Jin, Z., Zhang, Z., Demir, K., & Gu, G. X. (2020). Machine learning for advanced additive manufacturing. Matter, 3, 1541–1556. https://doi.org/10.1016/j.matt.2020.08.023 Kumar, A., & Maji, K. (2020). Selection of process parameters for near-net shape deposition in wire arc additive manufacturing by genetic algorithm. Journal of Materials Engineering and Performance, 29, 3334–3352. https://doi.org/10.1007/s11665-020-04847-1 Larsen, S., & Hooper, P. A. (2022). Deep semi-supervised learning of dynamics for anomaly detection in laser powder bed fusion. Journal of Intelligent Manufacturing, 33, 457–471. https://doi.org/10.1007/s10845-021-01842-8 Lee, T.-M., Kang, T. G., Yang, J. S., Jo, J., Kim, K.-Y., Choi, B.-O., & Kim, D.-S. (2008a). Gap adjustable molten metal DoD inkjet system with cone-shaped piston head. Journal of Manufacturing Science and Engineering, 10(1115/1), 2917367. Lee, T., Kang, T. G., Yang, J., Jo, J., Kim, K., Choi, B., & Kim, D. (2008b). Drop-on-demand solder droplet jetting system for fabricating microstructure. IEEE Transactions on Electronics Packaging Manufacturing, 31, 202–210. https://doi.org/10.1109/TEPM.2008.926285 Lee, X. Y., Saha, S. K., Sarkar, S., & Giera, B. (2020). Automated detection of part quality during two-photon lithography via deep learning. Additive Manufacturing, 36, 101444. https://doi.org/10.1016/j.addma.2020.101444 Li, H., Mei, S., Wang, L., Gao, Y., & Liu, J. (2014). Splashing phenomena of room temperature liquid metal droplet striking on the pool of the same liquid under ambient air environment. International Journal of Heat and Fluid Flow, 47, 1–8. https://doi.org/10.1016/j.ijheatfluidflow.2014.02.002 Luo, J., Qi, L.-H., Zhou, J.-M., Hou, X.-H., & Li, H.-J. (2012). Modeling and characterization of metal droplets generation by using a pneumatic drop-on-demand generator. Journal of Materials Processing Technology, 212, 718–726. https://doi.org/10.1016/j.jmatprotec.2011.04.014 Luo, J., Qi, L., Tao, Y., Ma, Q., & Visser, C. W. (2016a). Impact-driven ejection of micro metal droplets on-demand. International Journal of Machine Tools and Manufacture, 106, 67–74. https://doi.org/10.1016/j.ijmachtools.2016.04.002 Luo, Z., Wang, X., Lingyun, W., Sun, D., & Li, Z. (2016b). Drop-on-demand electromagnetic printing of metallic droplets. Materials Letters. https://doi.org/10.1016/j.matlet.2016.11.021 Medsker, L. R., & Jain, L. (2001). Recurrent neural networks. Design and Applications, 5, 64–67. https://doi.org/10.1201/9781003040620 Meng, L., McWilliams, B., Jarosinski, W., Park, H.-Y., Jung, Y.-G., Lee, J., & Zhang, J. (2020). Machine learning in additive manufacturing: A review. JOM Journal of the Minerals Metals and Materials Society, 72, 2363–2377. https://doi.org/10.1007/s11837-020-04155-y Montazeri, M., Nassar, A. R., Stutzman, C. B., & Rao, P. (2019). Heterogeneous sensor-based condition monitoring in directed energy deposition. Additive Manufacturing, 30, 100916. https://doi.org/10.1016/j.addma.2019.100916 Nussbaumer, H. J. (1981). The fast Fourier transform. Fast Fourier Transform and Convolution Algorithms. https://doi.org/10.1007/978-3-662-00551-4_4 Pasandideh-Fard, M., Bhola, R., Chandra, S., & Mostaghimi, J. (1998). Deposition of tin droplets on a steel plate: Simulations and experiments. International Journal of Heat and Mass Transfer, 41, 2929–2945. https://doi.org/10.1016/S0017-9310(98)00023-4 Poozesh, S., Saito, K., Akafuah, N. K., & Graña-Otero, J. (2016). Comprehensive examination of a new mechanism to produce small droplets in drop-on-demand inkjet technology. Applied Physics A, 122, 110. https://doi.org/10.1007/s00339-016-9630-9 Qin, J., Hu, F., Liu, Y., Witherell, P., Wang, C. C. L., Rosen, D. W., Simpson, T. W., Lu, Y., & Tang, Q. (2022). Research and application of machine learning for additive manufacturing. Additive Manufacturing, 52, 102691. https://doi.org/10.1016/j.addma.2022.102691 Radovic, M., Ghalwash, M., Filipovic, N., & Obradovic, Z. (2017). Minimum redundancy maximum relevance feature selection approach for temporal gene expression data. BMC Bioinformatics, 18, 9. https://doi.org/10.1186/s12859-016-1423-9 Rao, P., Bukkapatnam, S., Beyca, O., Kong, Z. J., & Komanduri, R. (2014). Real-time identification of incipient surface morphology variations in ultraprecision machining process. Journal of Manufacturing Science and Engineering. https://doi.org/10.1115/1.4026210 Rifkin, R., & Lippert, R., (2007). Notes on regularized least squares. Retrieved from http://hdl.handle.net/1721.1/37318. Rosenfeld, A. (1970). Connectivity in digital pictures. Journal of the Association for Computing Machinery, 17(1), 146–160. https://doi.org/10.1145/321556.321570 Sanaat, A., Shiri, I., Ferdowsi, S., Arabi, H., & Zaidi, H. (2022). Robust-deep: A method for increasing brain imaging datasets to improve deep learning models’ performance and robustness. Journal of Digital Imaging. https://doi.org/10.1007/s10278-021-00536-0 Simonelli, M., Aboulkhair, N., Rasa, M., East, M., Tuck, C., Wildman, R., Salomons, O., & Hague, R. (2019). Towards digital metal additive manufacturing via high-temperature drop-on-demand jetting. Additive Manufacturing, 30, 100930. https://doi.org/10.1016/j.addma.2019.100930 Sohn, H., & Yang, D. Y. (2005). Drop-on-demand deposition of superheated metal droplets for selective infiltration manufacturing. Materials Science and Engineering: A, 392, 415–421. https://doi.org/10.1016/j.msea.2004.09.049 Song, M., Kartawira, K., Hillaire Keith, D., Li, C., Eaker Collin, B., Kiani, A., Daniels Karen, E., & Dickey Michael, D. (2020). Overcoming Rayleigh-Plateau instabilities: Stabilizing and destabilizing liquid-metal streams via electrochemical oxidation. Proceedings of the National Academy of Sciences, 117, 19026–19032. https://doi.org/10.1073/pnas.2006122117 Stein, S., Zhao, W., Hentschel, O., Bickmann, C., Roth, S., Frick, T., & Schmidt, M. (2018). Flight trajectory analysis of CuSn-droplets generated by laser drop on demand jetting, using stereoscopic high-speed imaging. Optics Express, 26, 10968–10980. https://doi.org/10.1364/oe.26.010968 Sukhotskiy, V., Karampelas, I., Garg, G., Verma, A., Tong, M., Vader, S., Vader, Z., & Furlani, E. (2017). Magnetohydrodynamic drop-on-demand liquid metal 3D printing. Proceedings of the Solid Freeform Fabrication. https://doi.org/10.26153/tsw/16905 Sukhotskiy, V., Tawil, K., & Einarsson, E. (2021). Printability regimes of pure metals using contactless magnetohydrodynamic drop-on-demand actuation. Physics of Fluids, 33, 053303. https://doi.org/10.1063/5.0050354 Vaissier, B., Pernot, J.-P., Chougrani, L., & Véron, P. (2019). Genetic-algorithm based framework for lattice support structure optimization in additive manufacturing. Computer-Aided Design, 110, 11–23. https://doi.org/10.1016/j.cad.2018.12.007 Wang, C.-H., Tsai, H.-L., Wu, Y.-C., & Hwang, W.-S. (2016). Investigation of molten metal droplet deposition and solidification for 3D printing techniques. Journal of Micromechanics and Microengineering, 26, 095012. https://doi.org/10.1088/0960-1317/26/9/095012 Wang, T., Kwok, T.-H., & Zhou, C. (2017). In-situ droplet inspection and control system for liquid metal Jet 3D printing process. Procedia Manufacturing, 10, 968–981. https://doi.org/10.1016/j.promfg.2017.07.088 Wang, T., Kwok, T.-H., Zhou, C., & Vader, S. (2018). In-situ droplet inspection and closed-loop control system using machine learning for liquid metal jet printing. Journal of Manufacturing Systems, 47, 83–92. https://doi.org/10.1016/j.jmsy.2018.04.003 Wang, C., Tan, X. P., Tor, S. B., & Lim, C. S. (2020). Machine learning in additive manufacturing: State-of-the-art and perspectives. Additive Manufacturing, 36, 101538. https://doi.org/10.1016/j.addma.2020.101538 Xia, C., Pan, Z., Polden, J., Li, H., Xu, Y., & Chen, S. (2021). Modelling and prediction of surface roughness in wire arc additive manufacturing using machine learning. Journal of Intelligent Manufacturing. https://doi.org/10.1007/s10845-020-01725-4 Yuan, B., Guss, G. M., Wilson, A. C., Hau-Riege, S. P., DePond, P. J., McMains, S., Matthews, M. J., & Giera, B. (2018). Machine-learning-based monitoring of laser powder bed fusion. Advanced Materials Technologies, 3, 1800136. https://doi.org/10.1002/admt.201800136 Zhong, S.-Y., Qi, L.-H., Xiong, W., Luo, J., & Xu, Q.-X. (2017). Research on mechanism of generating aluminum droplets smaller than the nozzle diameter by pneumatic drop-on-demand technology. The International Journal of Advanced Manufacturing Technology, 93, 1771–1780. https://doi.org/10.1007/s00170-017-0484-x