Dense and high-hydrophobic rutile TiO2 nanorod arrays

Applied Physics A Solids and Surfaces - Tập 80 - Trang 473-476 - 2005
X. Peng1, A. Chen1
1Department of Chemistry, Lakehead University, Thunder Bay, Canada

Tóm tắt

Dense and well-oriented rutile TiO2 nanorod arrays were synthesized on a titanium substrate using the organic compound dibutyltin dilaurate as the oxygen source in the oxidation of Ti at 850 °C. The influence of temperature on the nanostructured TiO2 formation and the effect of the TiO2 structures on their wettability were also investigated. Polycrystalline TiO2 grains were formed at 800 °C; in contrast, TiO2 micro-whiskers were grown on the Ti substrate at 900 °C. The measurement of the water contact angle shows that the wetting property of the TiO2 films strongly depends on their surface structure. The surface of the dense well-oriented nanorod arrays is highly hydrophobic with a water contact angle of 130 °C. This study has demonstrated that the direct oxidation of Ti substrate using an organic oxygen source is a promising method for fabrication of large scale, uniform and well-aligned TiO2 nanorod arrays on titanium substrates.

Tài liệu tham khảo

U. Diebold: Surf. Sci. Rep. 48, 53 (2003) P. Bonhote, E. Gogniat, M. Gräztel, P.V. Ashrit: Thin Solid Film 350, 269 (1999) J. Lausmaa, M. Ask, U. Rolander, B. Kasemo: Mater. Res. Soc. Sym. Proc. 110, 647 (1988) Y. Masumoto, T. Shono, T. Hasegawa, T. Fukumura, M. Kawasaki, P. Ahmet, T. Chikyow, S. Koshihara, H. Koinuma: Science 291, 854 (2001) R. Wang, N. Sakai, A. Fujishima, T. Watanabe, K. Hashimoto: J. Phys. Chem. B 103, 2188 (1999) N. Sakai, A. Fujishima, T. Watanabe, K. Hashimoto: J. Phys. Chem. B 107, 1028 (2003) T.S. Yang, C.B. Shiu, M.S. Wong: Surf. Sci. 548, 75 (2004) K.-S. Lee, I.-S. Park: Scripta Materialia 48, 659 (2003) M.C. Marco de Lucas, F. Fabreguette, S. Collin, S. Bourgeois: Int. J. Inorg. Mater. 2, 255 (2000) D. Byun, Y. Jin, B. Kim, J.L. Lee, D. Park: J. Hazard Mater. B 73, 199 (2000) D. Damiriv, A.R. Bally, C. Ballif, P. Homes, P.E. Schmid, R. Sanjines, F. Levy, V.I. Parvulescu: Appl. Catal. B 25, 83 (2000) X.P. Wang, Y. Yu, X.F. Hu, L. Gao: Thin Solid Films 371, 148 (2000) K. Kato, A. Tsuzuki, H. Taoda, Y. Torrii, T. Kato, Y. Batsugn: J. Mater. Sci. 29, 5911 (1994) P. Hoyer: Langmuir 12, 1411 (1996) S M. Liu, L.M. Gan, L.H. Lu, W.D. Zhang, H.C. Zheng: Chem. Mater. 14, 1391 (2002) S.D. Burnside, V. Shklower, C. Barbe, P. Comte, F. Arendse, K. Brookes, M. Grätzel: Chem. Mater. 10, 2419 (1998) C.-Y. Wang, H. Groenzin, M.J. Shultz: J. Phys. Chem. B 108, 265 (2004) Z.R.R. Tian, J.A. Voigt, J. Liu, B. Mckenzie, H.F. Xu: J. Am. Chem. Soc. 125, 12384 (2003) S. Yoo, S.A. Akbar, K.H. Sandhage: Adv. Mater. 16, 260 (2004) P. Yang, D. Zhao, D.I. Margolese, B.F. Chmelka, G.D. Stucky: Nature 396, 152 (1998) X. Peng, A. Chen: J. Mater. Chem. 14, 2542 (2004) F. Czerwinski, J.A. Szpunar: Micron 29, 201 (1998) V. Badescu, M. Mormirlan: J. Crystal Growth 169, 309 (1996) F. Gracia, J.P. Holgado, L. Contreras, T. Girardeau, A.R. González-Elipe: Thin Solid Films 429, 84 (2003) J.Y. Shiu, C.W. Kuo, P.L. Chen, C.Y. Mou: Chem. Mater. 16, 561 (2004) Z. Yoshimito, A. Nakajima, T. Watanabe, K. Hasjimoto, Langmuir 18, 5818 (2002) R.N. Wenzel: Ind. Eng. Chem. 28, 988 (1936) A.B.D. Cassie, S. Baxter: Trans. Faraday Soc. 40, 546 (1944) K.K.S. Lau, J. Bico, K.B.K. Teo, M. Chhowalla, G.A.J. Amaratunga, W.I. Milne, G.H. Mckinley, K.K. Gleason: Nano Lett. 3, 1701 (2003)