Theoretical and experimental investigation of the dynamic behaviour of a standing-wave thermoacoustic engine with various boundary conditions

International Journal of Heat and Mass Transfer - Tập 123 - Trang 367-381 - 2018
Geng Chen1, Lihua Tang1, Brian R. Mace1
1Department of Mechanical Engineering, University of Auckland, 20 Symonds Street, Auckland 1010, New Zealand

Tài liệu tham khảo

Rayleigh, 1896 Rott, 1980, Thermoacoustics, Adv. Appl. Mech., 20, 135, 10.1016/S0065-2156(08)70233-3 Rott, 1973, Thermally driven acoustic oscillations Part II: Stability limit for helium, Zeitschrift für angewandte Mathematik und Physik ZAMP, 24, 54, 10.1007/BF01593998 Rott, 1974, The influence of heat conduction on acoustic streaming, Zeitschrift für angewandte Mathematik und Physik ZAMP, 25, 417, 10.1007/BF01594958 Rott, 1975, Thermally driven acoustic oscillations Part III: Second-order heat flux, Zeitschrift für angewandte Mathematik und Physik ZAMP, 26, 43, 10.1007/BF01596277 Rott, 1976, Thermally driven acoustic oscillations, part IV: tubes with variable cross-section, Zeitschrift für angewandte Mathematik und Physik ZAMP, 27, 197, 10.1007/BF01590805 G.W. Swift, Thermoacoustics: A unifying perspective for some engines and refrigerators, in: ASA, 2003. Swift, 1988, Thermoacoustic engines, J. Acoust. Soc. Am., 84, 1145, 10.1121/1.396617 Wollan, 2001 Swift, 2002, Thermoacoustics for liquefaction of natural gas, GasTIPS, 8, 21 Swift, 1993, Thermoacoustics in pin-array stacks, J. Acoust. Soc. Am., 94, 941, 10.1121/1.408196 Swift, 1992, Analysis and performance of a large thermoacoustic engine, J. Acoust. Soc. Am., 92, 1551, 10.1121/1.403896 Ward, 2012 Yu, 2011, A method of characterising performance of audio loudspeakers for linear alternator applications in low-cost thermoacoustic electricity generators, Appl. Acoust., 72, 260, 10.1016/j.apacoust.2010.11.011 Wu, 2014, Investigation on a 1kW traveling-wave thermoacoustic electrical generator, Appl. Energy, 124, 140, 10.1016/j.apenergy.2014.02.063 R. Johnston, W. Martini, M. White, Stirling engine power system and coupler, in, Google Patents, 1974. Symko, 2004, Design and development of high-frequency thermoacoustic engines for thermal management in microelectronics, Microelectron. J., 35, 185, 10.1016/j.mejo.2003.09.017 K.I. Matveev, A. Wekin, C.D. Richards, N. Shafrei-Tehrany, On the coupling between standing-wave thermoacoustic engine and piezoelectric transducer, in: ASME 2007 International Mechanical Engineering Congress and Exposition, American Society of Mechanical Engineers, 2007, pp. 765–769. Nouh, 2014, Theoretical modeling and experimental realization of dynamically magnified thermoacoustic-piezoelectric energy harvesters, J. Sound Vib., 333, 3138, 10.1016/j.jsv.2014.02.016 Nouh, 2012, Energy harvesting of thermoacoustic-piezo systems with a dynamic magnifier, J. Vib. Acoust., 134, 061015, 10.1115/1.4005834 Nowak, 2014, Analytical and numerical approach in the simple modelling of thermoacoustic engines, Int. J. Heat Mass Transf., 77, 369, 10.1016/j.ijheatmasstransfer.2014.05.018 Rogoziński, 2017, Modeling the operation of a thermoacoustic engine, Energy, 138, 249, 10.1016/j.energy.2017.07.058 Zink, 2010, CFD simulation of thermoacoustic cooling, Int. J. Heat Mass Transfer, 53, 3940, 10.1016/j.ijheatmasstransfer.2010.05.012 Hariharan, 2015, Studies on performance of thermoacoustic prime mover, Exp. Heat Transfer, 28, 267, 10.1080/08916152.2013.871605 Trapp, 2011, Thermoacoustic heat engine modeling and design optimization, Appl. Therm. Eng., 31, 2518, 10.1016/j.applthermaleng.2011.04.017 Kuzuu, 2017, Effect of non-linear flow behavior on heat transfer in a thermoacoustic engine core, Int. J. Heat Mass Transf., 108, 1591, 10.1016/j.ijheatmasstransfer.2016.12.064 L.E. Kinsler, A.R. Frey, A.B. Coppens, J.V. Sanders, Fundamentals of acoustics, Fundamentals of Acoustics, 4th ed., by Lawrence E. Kinsler, Austin R. Frey, Alan B. Coppens, James V. Sanders, pp. 560. ISBN 0-471-84789-5. Wiley-VCH, December 1999, 560. Vinson, 2012 Chapman, 1970 Pletcher, 2012