Theoretical and experimental investigation of the dynamic behaviour of a standing-wave thermoacoustic engine with various boundary conditions
Tài liệu tham khảo
Rayleigh, 1896
Rott, 1980, Thermoacoustics, Adv. Appl. Mech., 20, 135, 10.1016/S0065-2156(08)70233-3
Rott, 1973, Thermally driven acoustic oscillations Part II: Stability limit for helium, Zeitschrift für angewandte Mathematik und Physik ZAMP, 24, 54, 10.1007/BF01593998
Rott, 1974, The influence of heat conduction on acoustic streaming, Zeitschrift für angewandte Mathematik und Physik ZAMP, 25, 417, 10.1007/BF01594958
Rott, 1975, Thermally driven acoustic oscillations Part III: Second-order heat flux, Zeitschrift für angewandte Mathematik und Physik ZAMP, 26, 43, 10.1007/BF01596277
Rott, 1976, Thermally driven acoustic oscillations, part IV: tubes with variable cross-section, Zeitschrift für angewandte Mathematik und Physik ZAMP, 27, 197, 10.1007/BF01590805
G.W. Swift, Thermoacoustics: A unifying perspective for some engines and refrigerators, in: ASA, 2003.
Swift, 1988, Thermoacoustic engines, J. Acoust. Soc. Am., 84, 1145, 10.1121/1.396617
Wollan, 2001
Swift, 2002, Thermoacoustics for liquefaction of natural gas, GasTIPS, 8, 21
Swift, 1993, Thermoacoustics in pin-array stacks, J. Acoust. Soc. Am., 94, 941, 10.1121/1.408196
Swift, 1992, Analysis and performance of a large thermoacoustic engine, J. Acoust. Soc. Am., 92, 1551, 10.1121/1.403896
Ward, 2012
Yu, 2011, A method of characterising performance of audio loudspeakers for linear alternator applications in low-cost thermoacoustic electricity generators, Appl. Acoust., 72, 260, 10.1016/j.apacoust.2010.11.011
Wu, 2014, Investigation on a 1kW traveling-wave thermoacoustic electrical generator, Appl. Energy, 124, 140, 10.1016/j.apenergy.2014.02.063
R. Johnston, W. Martini, M. White, Stirling engine power system and coupler, in, Google Patents, 1974.
Symko, 2004, Design and development of high-frequency thermoacoustic engines for thermal management in microelectronics, Microelectron. J., 35, 185, 10.1016/j.mejo.2003.09.017
K.I. Matveev, A. Wekin, C.D. Richards, N. Shafrei-Tehrany, On the coupling between standing-wave thermoacoustic engine and piezoelectric transducer, in: ASME 2007 International Mechanical Engineering Congress and Exposition, American Society of Mechanical Engineers, 2007, pp. 765–769.
Nouh, 2014, Theoretical modeling and experimental realization of dynamically magnified thermoacoustic-piezoelectric energy harvesters, J. Sound Vib., 333, 3138, 10.1016/j.jsv.2014.02.016
Nouh, 2012, Energy harvesting of thermoacoustic-piezo systems with a dynamic magnifier, J. Vib. Acoust., 134, 061015, 10.1115/1.4005834
Nowak, 2014, Analytical and numerical approach in the simple modelling of thermoacoustic engines, Int. J. Heat Mass Transf., 77, 369, 10.1016/j.ijheatmasstransfer.2014.05.018
Rogoziński, 2017, Modeling the operation of a thermoacoustic engine, Energy, 138, 249, 10.1016/j.energy.2017.07.058
Zink, 2010, CFD simulation of thermoacoustic cooling, Int. J. Heat Mass Transfer, 53, 3940, 10.1016/j.ijheatmasstransfer.2010.05.012
Hariharan, 2015, Studies on performance of thermoacoustic prime mover, Exp. Heat Transfer, 28, 267, 10.1080/08916152.2013.871605
Trapp, 2011, Thermoacoustic heat engine modeling and design optimization, Appl. Therm. Eng., 31, 2518, 10.1016/j.applthermaleng.2011.04.017
Kuzuu, 2017, Effect of non-linear flow behavior on heat transfer in a thermoacoustic engine core, Int. J. Heat Mass Transf., 108, 1591, 10.1016/j.ijheatmasstransfer.2016.12.064
L.E. Kinsler, A.R. Frey, A.B. Coppens, J.V. Sanders, Fundamentals of acoustics, Fundamentals of Acoustics, 4th ed., by Lawrence E. Kinsler, Austin R. Frey, Alan B. Coppens, James V. Sanders, pp. 560. ISBN 0-471-84789-5. Wiley-VCH, December 1999, 560.
Vinson, 2012
Chapman, 1970
Pletcher, 2012