Model-consistent estimation of the basic reproduction number from the incidence of an emerging infection

Journal of Mathematical Biology - Tập 55 - Trang 803-816 - 2007
M. G. Roberts1, J. A. P. Heesterbeek2
1Centre for Mathematical Biology, Institute of Information and Mathematical Sciences, Massey University, Auckland, New Zealand
2Faculty of Veterinary Medicine, University of Utrecht, Utrecht, The Netherlands

Tóm tắt

We investigate the merit of deriving an estimate of the basic reproduction number $$ \mathcal{R}_0 $$ early in an outbreak of an (emerging) infection from estimates of the incidence and generation interval only. We compare such estimates of $$ \mathcal{R}_0 $$ with estimates incorporating additional model assumptions, and determine the circumstances under which the different estimates are consistent. We show that one has to be careful when using observed exponential growth rates to derive an estimate of $$ \mathcal{R}_0 $$ , and we quantify the discrepancies that arise.

Từ khóa


Tài liệu tham khảo

Aldis G.K. and Roberts M.G. (2005). An integral equation model for the control of a smallpox outbreak. Math. Biosci. 195: 1–2

Abramowitz M. and Stegun I.A. (1964). Handbook of Mathematical Functions. Dover, New York

Anderson R.M. and May R.M. (1991). Infectious Diseases of Humans: Dynamics and Control. Oxford Press, New York

Cauchemez S., Boële P.-Y., Donnelly C.L., Ferguson N.M., Thomas G., Lueng G.M., Hedley A.J., Anderson R.M. and Valeron A.-J. (2006). Real-time estimates in early detection of SARS. Emerg. Infect. Dis. 12: 110–13

Choi B.C.K. and Pak A.W.P. (2003). A simple approximate mathematical model to predict the number of severe acute respiratory syndrome cases and deaths. J. Epidemiol. Commun. Health 57: 831–35

Diekmann O. and Heesterbeek J.A.P. (2000). Mathematical Epidemiology of Infectious Diseases: Model Analysis and Interpretation. Wiley, New York

Diekmann O., Heesterbeek J.A.P. and Metz J.A.J. (1990). On the definition and computation of the basic reproduction ratio R 0 in models for infectious diseases in heterogeneous populations. J. Math. Biol. 28: 365–82

Ferguson N., Cummings D.A.T., Cauchemez S., Fraser C., Riley S., Meeyai A., Iamsirithaworn S. and Burke D.S. (2005). Strategies for containing an emerging influenza pandemic in Southeast Asia. Nature 437: 209–14

Ferrari M.J., Bjørnstad O.N. and Dobson A.P. (2005). Estimation and inference of \( \mathcal{R}_0 \) of an infectious pathogen by a removal method Math. Biosci. 198: 14–6

Fine P.E.M. (2003). The interval between successive cases of an infectious disease. Am. J. Epidemiol. 158: 1039–047

Haydon D., Chase-Topping M., Shaw D.J., Matthews L., Friar J., Wilesmith J. and Woolhouse M.E.J. (2003). The construction and analysis of epidemic trees with reference to the 2001 UK foot-and-mouth outbreak. Proc. R. Soc. Lond B 270: 121–27

Heesterbeek J.A.P. (2002). A brief history of \( \mathcal{R}_0 \) and a recipe for its calculation Acta. Biotheor. 50: 189–04

Heffernan J.M. and Wahl L.M. (2006). Improving Estimates of the basic reproductive ratio: using both the mean and dispersal of transition times. Theor. Popul. Biol. 70: 135–45

Lipsitch M., Cohen E., Cooper B., Robins J.M., Ma S., James L., Gopalakrishna G., Chew S.K., Tan C., Samore M.H., Fisman D. and Murray M. (2003). Transmission dynamics and control of severe acute respiratory syndrome. Science 300: 1966–970

Lloyd A.L. (2001). The dependence of viral parameter estimates on the assumed viral life cycle: limitations of studies of viral load data. Proc. R. Soc. B 268: 847–54

Lloyd-Smith J.O., Schreiber S.J., Kopp P.E. and Getz W.M. (2005). Superspreading and the effects of individual variation on disease emergence. Nature 438: 355–59

Meester R., Diekmann O., Koning J. and Jong M.C.M. (2002). Modeling and real-time prediction of classical swine fever epidemics. Biometrics 58: 178–84

Mills C.E., Robins J.M. and Lipsitch M. (2004). Transmissibility of 1918 pandemic influenza. Nature 432: 904–06

Roberts M.G. (2004). Modelling strategies for minimizing the impact of an imported exotic infection. Proc. R. Soc. B 271: 2411–415

Roberts M.G., Baker M., Jennings L.C., Sertsou G. and Wilson N. (2007). A model for the spread and control of pandemic influenza in an isolated geographical region. J. R. Soc. Interface 4: 325–30

Stegeman J.A., Elbers A.R.W., Smak J. and Jong M.C.M. (1999). Quantification of the transmission of classical swine fever virus between herds during the 1997–998 epidemic in the Netherlands. Prevent. Veterinary Med. 42: 219–34

Svensson A. (2007). A note on generation intervals in epidemic models. Math. Biosci. 208: 300–11

Wallinga J. and Lipsitch M. (2007). How generation intervals shape the relationship between growth rates and reproductive numbers. Proc. R. Soc. Ser. B 274: 599–04

Wallinga J. and Teunis P. (2004). Different epidemic curves for severe acute respiratory syndrome reveal similar impacts of control measures. Am. J. Epidemiol. 160: 509–16

Wearing H.J., Rohani P. and Keeling M.J. (2005). Appropriate models for the management of infectious diseases. PLoS Med. 7: 621–27

Zhou G. and Yan G. (2003). Severe acute respiratory syndrome epidemic in Asia. Emerg. Infect. Dis. 9: 1608–610