Sonic test singularities of granite stone masonries

Construction and Building Materials - Tập 397 - Trang 132391 - 2023
Rachel Martini1, Jorge Carvalho2, Esequiel Mesquita3, António Arêde4, Humberto Varum4
1DECMA – Federal Center for Technological Education in Minas Gerais (CEFET-MG), Brazil
2CERENA – Faculty of Engineering (FEUP), University of Porto, Portugal
3LAREB, Federal University of Ceará, Campus Russas (UFC), Brazil
4CONSTRUCT-LESE, Faculty of Engineering (FEUP), University of Porto, Portugal

Tài liệu tham khảo

Riva, 1997, 28 L. Binda, A. Saisi, State of the Art of Research on Historic Structures in Italy, (1996). M. Guimarães, Caracterização de paredes de alvenaria de pedra por técnica sònica, 2009. Miranda, 2012, Sonic Impact Method - A new technique for characterization of stone masonry walls, Constr Build Mater., 36, 27, 10.1016/j.conbuildmat.2012.04.018 E. MANNING, L.F. RAMOS, F.M. FERNANDES, Direct Sonic and Ultrasonic Wave Velocity in Masonry under Compressive Stress, 9th International Masonry Conference. (2014) 1–12. S.R.P.R. Matos, Caracterização de estruturas de alvenaria de pedra por recurso aos métodos do georadar, resistividade eléctrica e ensaios sónicos - Tese de mestrado, 2016. De Ponti, 2017, Evaluation of the masonry and timber structures of San Francisco Church in Santiago de Cuba through nondestructive diagnostic methods, Struct Control Health Monit., 24, e2001, 10.1002/stc.2001 L.F.B. Miranda, Ensaios acústicos e de macacos planos em alvenarias resistentes, Faculdade de Engenharia da Universidade do Porto, 2011. L. Miranda, J. Guedes, J. Rio, A. Costa, Stone Masonry Characterization Through Sonic Tests, Porto, 2010. L. Miranda, L. Cantini, J. Guedes, L. Binda, A. Costa, The influence of joints and stone properties on sonic tests, Proceedings of the 9th International Conference on Structural Dynamics, EURODYN. (2014) 2199–2204. Binda, 2001, Application of sonic tests to the diagnosis of damaged and repaired structures, 34, 123 Binda, 2003, Application of sonic and radar tests on the piers and walls of the Cathedral of Noto, Application of sonic and radar tests on the piers and walls of the Cathedral of Noto, 17, 613 M.R. Valluzzi, F.D.A. Porto, F. Casarin, N. Monteforte, A contribution to the characterization of masonry typologies by using sonic waves investigations Résumé Keywords Masonry and building typologies, (2009). Valluzzi, 2009, Effectiveness of injections evaluated by sonic tests on reduced scale multi-leaf masonry building subjected to seismic actions Résumé, Ndtce’09., 2 Binda, 2001, Application of sonic tests to the diagnosis of damaged and repaired structures, NDT and E Int., 34, 123, 10.1016/S0963-8695(00)00037-2 Yasar, 2004, Technical Note - Correlating sound velocity with the density, compressive strength and Young’s modulus of carbonate rocks, Int. J. Rock Mech. Min. Sci., 41, 871, 10.1016/j.ijrmms.2004.01.012 T. Ferreira, C.T. Farias, I. Menezes, D. Alves, I. Ribeiro, E.S. Filho, R. Paranhos, Determinação das velocidades de propagação longitudinal e transversal do sinal ultrassônico em diferentes tipos de aço, in: V Congresso Norte-Nordeste de Pesquisa e Inovação (CONNEPI), Maceió, 2010: p. 8. Cescatti, 2018, An Automatic Algorithm for the Execution and Elaboration of Sonic Pulse Velocity Tests in Direct and Tomographic Arrangements, 716 Milsom, 2003, Field Geophysics, Third Cascante, 2008, Novel Methodology for Nondestructive Evaluation of Brick Walls: Fuzzy Logic Analysis of MASW Tests, J. Infrastruct. Syst., 14, 117, 10.1061/(ASCE)1076-0342(2008)14:2(117) Mishina, 1975, Zero-crossing probability density of Doppler beat signals in the wave-period measuring system, Appl. Phys., 8, 179, 10.1007/BF00896035 V.M. Malhotra, N.J. Carino, The Ultrasonic Pulse Velocity Method, in: Handbook on Nondestructive Testing of Concrete, 2020. https://doi.org/10.1201/9781420040050-13. J.H. Bungey, The influence of reinforcement on ultrasonic pulse velocity testing, in: American Concrete Institute, ACI Special Publication, 1984. Dobrin, 1983, Introduction to geophysical prospecting, Third Martini, 2020, Non-destructive method of the assessment of stone masonry by artificial neural networks, The Open Construction and Building Technology Journal., 14, 84, 10.2174/1874836802014010084 M. Guimarães, Caracterização de paredes de alvenaria de pedra por técnica sònica, Faculdade de Engenharia da Universidade do Porto, 2009. I. da S. Maia, 2016 MatLab. Matrix Laboratory, MathWorks - MatLab and Simulink for Technical Computing - R2009b., (2013) Massachusetts, U.S.A. J.R. Torquato, M. de F. Bessa, H.M. Fernandes, USO DO PUNDIT NA DETERMINAÇÃO DE ANOMALIAS ULTRA-SÔNICAS EM BLOCOS ROCHOSOS, in: III SRONE, 2002: pp. 2–5. E.C. Manning, L.F. Ramos, P.B. Lourenço, F.M. Fernandes, Tube-jack and sonic testing for the evaluation of the state of stress in historical masonry, Emerging Technologies in Non-Destructive Testing VI - Proceedings of the 6th International Conference on Emerging Technologies in Nondestructive Testing, ETNDT 2016. (2016) 465–470. https://doi.org/10.2307/20551732. Silva, 2014, Compression and Sonic Tests to Assess Effectiveness of Grout Injection on Three-Leaf Stone Masonry Walls, International Journal of Archit. Herit., 8, 408, 10.1080/15583058.2013.826300 Russo, 2017, Simplified procedure for structural integrity’s evaluation of monuments in constrained context: The case of a Buddhist Temple in Bagan (Myanmar), J Cult Herit., 27, 48, 10.1016/j.culher.2017.03.003 P. V. Sharma, Environmental and engineering geophysics, Cambridge University Press, Cambridge, 1997. https://doi.org/10.1017/CBO9781139171168. Stanchits, 2006, Ultrasonic velocities, acoustic emission characteristics and crack damage of basalt and granite, Pure Appl Geophys., 163, 974, 10.1007/s00024-006-0059-5 Ai, 2007, Effects of shock-induced cracks on the ultrasonic velocity and attenuation in granite, J Geophys Res., 112, B01201, 10.1029/2006JB004353 Fener, 2011, The effect of rock sample dimension on the P-wave velocity, J Nondestr Eval., 30, 99, 10.1007/s10921-011-0095-7 Anzani, 2018, Understanding of historical masonry for conservation approaches: the contribution of Prof Luigia Binda to research advancement, Materials and Structures/Materiaux et Constructions., 51, 1 N. Mazzon, M.R. Valluzzi, M. Giaretton, C. Modena, Dynamic modal identification of strengthened three-leaf stone masonry walls subjected to out-of-plane shaking table tests, XV Convegno Nazionale “L’Ingegneria Sismica in Italia” - ANIDIS. (2013). Miranda, 2012, Sonic Impact Method – A new technique for characterization of stone masonry walls, Constr Build Mater., 36, 27, 10.1016/j.conbuildmat.2012.04.018 Finas, 2016, Automatic shear wave velocity estimation in bender element testing, Geotech. Test. J., 39, 557, 10.1520/GTJ20140197 Wu, 2015, Ultrasonic testing of a grouted steel tank for debonding conditions, J Environ Eng Geophys., 20, 31, 10.2113/JEEG20.1.31 Wu, 2014, Condition assessment of longitudinal pavement joints using ultrasonic surface waves, Can. J. Civ. Eng., 41, 1019, 10.1139/cjce-2013-0301 Suits, 2009, New methodology for source characterization in pulse velocity testing, Geotech. Test. J., 32, 101689, 10.1520/GTJ101689 E.S. Júlio, Avaliação in situ da resistência à compressão do betão, in: 2o Seminário - A Intervenção No Patrimônio. Práticas de Conservação e Reabilitação, 2005: pp. 41–52. G.F.M. Vasconcelos, Experimental investigations on the mechanics of stone masonry: Characterization of granites and behavior of ancient masonry shear walls - Tese de doutorado, 2005.