Height Fluctuations for the Stationary KPZ Equation
Tóm tắt
We compute the one-point probability distribution for the stationary KPZ equation (i.e. initial data
$\mathcal {H}(0,X)=B(X)$
, for B(X) a two-sided standard Brownian motion) and show that as time T goes to infinity, the fluctuations of the height function
$\mathcal {H}(T,X)$
grow like T
1/3 and converge to those previously encountered in the study of the stationary totally asymmetric simple exclusion process, polynuclear growth model and last passage percolation. The starting point for this work is our derivation of a Fredholm determinant formula for Macdonald processes which degenerates to a corresponding formula for Whittaker processes. We relate this to a polymer model which mixes the semi-discrete and log-gamma random polymers. A special case of this model has a limit to the KPZ equation with initial data given by a two-sided Brownian motion with drift ß to the left of the origin and b to the right of the origin. The Fredholm determinant has a limit for ß > b, and the case where ß = b (corresponding to the stationary initial data) follows from an analytic continuation argument.
Tài liệu tham khảo
Abramowitz, M., Stegun, I.A.: Pocketbook of mathematical functions. Thun-Frankfurt am Main, Verlag Harri Deutsch (1984)
Alberts, T., Khanin, K., Quastel, J.: The continuum directed random polymer. J. Stat. Phys. 154, 305–326 (2014)
Amir, G., Corwin, I., Quastel, J.: Probability distribution of the free energy of the continuum directed random polymer in 1 + 1 dimensions. Comm. Pure Appl. Math. 64, 466–537 (2011)
Andrews, G.E., Askey, R., Roy, R.: Special functions. Cambridge University Press (2004)
Baggett, L.: Analysis of functions of a single variable., http://spot.colorado.edu/baggett/book.pdf (2006)
Baik, J., Deift, P.A., Johansson, K.: On the distribution of the length of the longest increasing subsequence of random permutations. J. Amer. Math. Soc. 12, 1119–1178 (1999)
Baik, J., Ferrari, P.L., Péché, S.: Limit process of stationary TASEP near the characteristic line. Comm. Pure Appl. Math. 63, 1017–1070 (2010)
Baik, J., Ferrari, P.L., Péché, S.: Convergence of the two-point function of the stationary TASEP, Singular Phenomena and Scaling in Mathematical Models, pp. 91–100. Springer (2014)
Baik, J., Rains, E.M.: Limiting distributions for a polynuclear growth model with external sources. J. Stat. Phys. 100, 523–542 (2000)
Baik, J., Rains, E.M.: Symmetrized random permutations, Random Matrix Models and Their Applications, vol. 40, pp. 1–19. Cambridge University Press (2001)
Balázs, M., Quastel, J., Seppäläinen, T.: Scaling exponent for the Hopf–Cole solution of KPZ/Stochastic Burgers. J. Amer. Math. Soc. 24, 683–708 (2011)
Barraquand, G.: A phase transition for q-TASEP with a few slower particles, preprint: arXiv:1404.7409 (2014)
Bertini, L., Cancrini, N.: The stochastic heat equation: feynman–kac formula and intermittence. J. Stat. Phys. 78, 1377–1401 (1995)
Bertini, L., Giacomin, G.: Stochastic Burgers and KPZ equations from particle system. Comm. Math. Phys. 183, 571–607 (1997)
Borodin, A., Corwin, I.: Macdonald processes. Probab. Theory Relat. Fields 158, 225–400 (2014)
Borodin, A., Corwin, I., Ferrari, P.L.: Free energy fluctuations for directed polymers in random media in 1 + 1 dimension. Comm. Pure Appl. Math. 67, 1129–1214 (2014)
Borodin, A., Corwin, I., Gorin, V., Shakirov, Sh.: Observables of Macdonald processes, Transactions American Mathematics Society, to appear arXiv:1306.0659 (2013)
Borodin, A., Corwin, I., Petrov, L., Sasamoto, T.: Spectral theory for the q-Boson particle system, Compositio Mathematica, to appear arXiv:1308.3475 (2013)
Borodin, A., Corwin, I., Remenik, D.: Log-gamma polymer free energy fluctuations via a Fredholm determinant identity. Commun. Math. Phys. 324, 215–232 (2013)
Borodin, A., Corwin, I., Sasamoto, T.: From duality to determinants for q-TASEP and ASEP, Annals Probability, to appear arXiv:1207.5035 (2012)
Borodin, A., Ferrari, P.L.: Large time asymptotics of growth models on space-like paths I: PushASEP. Electron. J. Probab. 13, 1380–1418 (2008)
Borodin, A., Ferrari, P.L.: Anisotropic Growth of Random Surfaces in 2+1 Dimensions. Comm. Math. Phys. 325, 603–684 (2014)
Borodin, A., Ferrari, P.L., Prähofer, M.: Fluctuations in the discrete TASEP with periodic initial configurations and the Airy1 process. Int. Math. Res. Papers 2007, rpm002 (2007)
Borodin, A., Ferrari, P.L., Prähofer, M., Sasamoto, T.: Fluctuation properties of the TASEP with periodic initial configuration. J. Stat. Phys. 129, 1055–1080 (2007)
Borodin, A., Ferrari, P.L., Sasamoto, T.: Large time asymptotics of growth models on space-like paths II: PNG and parallel TASEP. Comm. Math. Phys. 283, 417–449 (2008)
Borodin, A., Gorin, V.: Lectures on integrable probability, arXiv:1212.3351 (2012)
Borodin, A., Péché, S.: Airy kernel with two sets of parameters in directed percolation and random matrix theory. J. Stat. Phys. 132, 275–290 (2008)
Borodin, A., Petrov, L.: Integrable probability: From representation theory to Macdonald processes, arXiv:1310.8007 (2013)
Borodin, A., Petrov, L.: Nearest neighbor Markov dynamics on Macdonald processes, arXiv:1305.5501 (2013)
Calabrese, P., Le Doussal, P.: The KPZ equation with flat initial condition and the directed polymer with one free end. Phys. Rev. Lett. 106, 250603 (2011)
Calabrese, P., Le Doussal, P.: The KPZ equation with flat initial condition and the directed polymer with one free end. J. Stat. Mech. P06001 (2012)
Calabrese, P., Le Doussal, P., Rosso, A.: Free-energy distribution of the directed polymer at high temperature. EPL 90, 20002 (2010)
Corwin, I.: The Kardar–Parisi–Zhang equation and universality class. Random Matices: Theory Appl. 1, 1130001 (2012)
Corwin, I.: Two ways to solve ASEP, Topics in percolative and disordered systems, arXiv:1212.2267 (2012)
Corwin, I.: Macdonald processes, quantum integrable systems and the Kardar–Parisi–Zhang universality class, arXiv:1403.6877 (2014)
Corwin, I., Hammond, A.: KPZ line ensemble, arXiv:1312.2600 (2013)
Corwin, I., O’Connell, N., Seppäläinen, T., Zygouras, N.: Tropical combinatorics and Whittaker functions. Duke Math. J. 163, 513–563 (2014)
Corwin, I., Quastel, J.: Universal distribution of fluctuations at the edge of the rarefaction fan. Ann. Probab. 41, 1243–1314 (2013)
Dembo, A., Tsai, L.-C.: Weakly asymmetric non-simple exclusion process and the Kardar–Parisi–Zhang equation, arXiv:1302.5760 (2013)
Dotsenko, V.: Replica Bethe ansatz derivation of the Tracy–Widom distribution of the free energy fluctuations in one-dimensional directed polymers. J. Stat. Mech. P07010 (2010)
Dotsenko, V.: Two-point free energy distribution function in (1 + 1) directed polymers. J. Phys. A. 46, 355001 (2013)
Le Doussal, P.: Integrable crossover from droplet to flat initial conditions in the KPZ equation from the replica Bethe ansatz. J. Stat. Mech. P04018 (2014)
Ferrari, P.L.: Polynuclear growth on a flat substrate and edge scaling of GOE eigenvalues. Comm. Math. Phys. 252, 77–109 (2004)
Ferrari, P.L.: The universal Airy1 and Airy2 processes in the Totally Asymmetric Simple Exclusion Process, Integrable Systems and Random Matrices. In: Baik, J., Kriecherbauer, T., Li, L.-C., McLaughlin, K., Tomei, C. (eds.) Honor of Percy Deift, pp. 321–332. Contemporary Mathematics, American Mathematics Society (2008)
Ferrari, P.L.: From interacting particle systems to random matrices. J. Stat. Mech. P10016 (2010)
Ferrari, P.L.: Why random matrices share universal processes with interacting particle systems?, Lecture notes for the Summer School in Trieste; arXiv:1312.1126 (2013)
Ferrari, P.L., Spohn, H.: Scaling limit for the space-time covariance of the stationary totally asymmetric simple exclusion process. Comm. Math. Phys. 265, 1–44 (2006)
Ferrari, P.L., Spohn, H., Weiss, T.: Scaling limit for Brownian motions with one-sided collisions, Annals Application Probability, to appear arXiv:1306.5095 (2013)
Ferrari, P.L., Spohn, H., Weiss, T.: In preparation (2014)
Ferrari, P.L., Vető, B.: Tracy–Widom asymptotics for q-TASEP, Annals Institute Henri Poincaré Probability Statistics, to appear arXiv:1310.2515 (2013)
Moreno Flores, G., Quastel, J., Remenik, D.: In preparation (2014)
Forster, D., Nelson, D.R., Stephen, M.J.: Large-distance and long-time properties of a randomly stirred fluid. Phys. Rev. A 16, 732–749 (1977)
Givental, A.: Stationary phase integrals, quantum Toda lattices, flag manifolds and the mirror conjecture. AMS Transl. Ser. 2(180), 103–116 (1997)
González, M.: Classical complex analysis. M. Dekker, New York (1992)
Hahn, W.: Beiträge zur Theorie der Heineschen Reihen. Die 24 Integrale der hypergeometrischen q-Differenzengleichung. Das q-Analogon der Laplace-Transformation. Math. Nachr. 2, 340–379 (1949)
Hairer, M.: Solving the KPZ equation. Ann. Math. 178, 559–664 (2013)
Imamura, T., Sasamoto, T.: Fluctuations of the one-dimensional polynuclear growth model with external sources. Nucl. Phys. B 699, 503–544 (2004)
Imamura, T., Sasamoto, T.: Replica approach to the KPZ equation with half Brownian motion initial condition. J. Phys. A: Math. Theor. 44, 385001 (2011)
Imamura, T., Sasamoto, T.: Stationary correlations for the 1D KPZ equation. J. Stat. Phys. 150, 908–939 (2013)
Johansson, K.: Shape fluctuations and random matrices. Comm. Math. Phys. 209, 437–476 (2000)
Johansson, K.: The arctic circle boundary and the Airy process. Ann. Probab. 33, 1–30 (2005)
Kardar, M., Parisi, G., Zhang, Y.Z.: Dynamic scaling of growing interfaces. Phys. Rev. Lett. 56, 889–892 (1986)
Macdonald, I.G.: Symmetric functions and hall polynomials, 2nd edn. Oxford University Press (1999)
Nguyen, T.H., Yakubovich, S.B.: The double Mellin–Barnes type integrals and their applications to convolution theory. World Scientific, Singapore (1992)
O’Connell, N.: Directed polymers and the quantum Toda lattice. Ann. Probab. 40, 437–458 (2012)
O’Connell, N., Warren, J.: A multi-layer extension of the stochastic heat equation, arXiv:1104.3509 (2011)
O’Connell, N., Yor, M.: Brownian analogues of Burke’s theorem. Stoch. Proc. Appl. 96, 285–304 (2001)
Prähofer, M., Spohn, H.: Scale invariance of the PNG droplet and the Airy process. J. Stat. Phys. 108, 1071–1106 (2002)
Prähofer, M., Spohn, H.: Exact scaling function for one-dimensional stationary KPZ growth. J. Stat. Phys. 115, 255–279 (2004)
Prolhac, S., Spohn, H.: The one-dimensional KPZ equation and the Airy process. J. Stat. Mech. P03020 (2011)
Quastel, J.: Introduction to KPZ, http://www.math.toronto.edu/quastel/survey.pdf (2014)
Quastel, J., Remenik, D.: Local behavior and hitting probabilities of the Airy1 process. Prob. Theory Relat. Fields 157, 605–634 (2013)
Sasamoto, T.: Spatial correlations of the 1D KPZ surface on a flat substrate. J. Phys. A 38, L549—L556 (2005)
Sasamoto, T., Spohn, H.: Exact height distributions for the KPZ equation with narrow wedge initial condition. Nucl. Phys. B 834, 523–542 (2010)
Sasamoto, T., Spohn, H.: The 1 + 1-dimensional Kardar–Parisi–Zhang equation and its universality class. J. Stat. Mech. P11013 (2010)
Seppäläinen, T.: Scaling for a one-dimensional directed polymer with boundary conditions. Ann. Probab., 19–73 (2012)
Seppäläinen, T., Valkó, B.: Bounds for scaling exponents for a 1 + 1 dimensional directed polymer in a Brownian environment. ALEA 7, 451–476 (2010)
Thiery, T., Le Doussal, P.: Log-gamma directed polymer with fixed endpoints via the replica bethe ansatz, arXiv:1406.5963 (2014)
Tracy, C.A., Widom, H.: A Fredholm Determinant Representation in ASEP. J. Stat. Phys. 132, 291–300 (2008)
Tracy, C.A., Widom, H.: Integral formulas for the asymmetric simple exclusion process. Comm. Math. Phys. 279, 815–844 (2008). Erratum: Commun. Math. Phys. 304 (2011) 875–878
Tracy, C.A., Widom, H.: Asymptotics in ASEP with step initial condition. Comm. Math. Phys. 290, 129–154 (2009)