Synthesis and characterization of electrospun Ni0.5Co0.5−xCdxNd0.02Fe1.78O4 nanofibers

Nano-Structures and Nano-Objects - Tập 24 - Trang 100542 - 2020
F. Alahmari1, M.A. Almessiere2, Y. Slimani2, H. Güngüneş3, Sagar E. Shirsath4, S. Akhtar2, Mariusz Jaremko5, A. Baykal1
1Department of Nanomedicine, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, 31441 Dammam, Saudi Arabia
2Department of Biophysics, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, 31441 Dammam, Saudi Arabia
3Department of Physics, Hitit University, 19030 Çevre Yolu Bulvarı-Çorum, Turkey
4School of Materials Science and Engineering, University of New South Wales, Sydney, NSW 2052, Australia
5King Abdullah University of Science and Technology (KAUST), Biological and Environmental Sciences & Engineering Division (BESE), Thuwal 23955-6900, Saudi Arabia

Tài liệu tham khảo

Kefeni, 2017, Ferrite nanoparticles: Synthesis, characterisation and applications in electronic device, Mater. Sci. Eng. B, 215, 37, 10.1016/j.mseb.2016.11.002 Fawzi, 2010, Structural, dielectric properties and AC conductivity of ni(1−x)zn xfe2 O4 spinel ferrites, J. Alloys Compd., 502, 231, 10.1016/j.jallcom.2010.04.152 Sivakumar, 2010, Electrical and magnetic behaviour of nanostructured mgfe2 O4 spinel ferrite, J. Alloys Compd., 504, 395, 10.1016/j.jallcom.2010.05.125 Kefeni, 2020, Photocatalytic application of spinel ferrite nanoparticles and nanocomposites in wastewater treatment: Review, Sustain. Mater. Technol., 23 Tatarchuk, 2020, Adsorption of Sr(II) ions and salicylic acid onto magnetic magnesium-zinc ferrites: isotherms and kinetic studies, Environ. Sci. Pollut. Res., 27, 26681, 10.1007/s11356-020-09043-1 Tatarchukab, 2020, Structure, morphology and adsorption properties of titania shell immobilized onto cobalt ferrite nanoparticle core, J. Molecular Liquids, 297 Xiang, 2012, Electrospinning preparation, characterization and magnetic properties ofcobalt–nickel ferrite (co1-xnixfe2o4) nanofibers, J. Colloid Interface Sci., 376, 57, 10.1016/j.jcis.2012.02.068 Hamdaoui, 2019, Cd-doping effect on morphologic, structural, magnetic and electrical properties of ni0.6-xcdxmg0.4fe2o4 spinel ferrite (0 ≤ x ≤ 0.4, J. Alloys Compd., 803, 964, 10.1016/j.jallcom.2019.06.339 Amarante, 2019, Sintering behavior and electromagnetic properties of a ni–co ferrite/nio biphasic ceramic, Mater. Res. Express, 6, 10.1088/2053-1591/ab160b Mathe, 2010, Magnetostrictive properties of nanocrystalline co–ni ferrites, Physica B, 405, 3594, 10.1016/j.physb.2010.05.047 Houshiar, 2014, Synthesis of cobalt ferrite (cofe2 O4) nanoparticles using combustion, coprecipitation, and precipitation methods: A comparison study of size, structural, and magnetic properties, J. Magn. Magn. Mater., 371, 43, 10.1016/j.jmmm.2014.06.059 Wang, 2008, Preparation of ferrite mfe2o4 (m = co, ni) ribbons with nanoporous structure and their magnetic properties, J. Phys. Chem. B, 112, 11292, 10.1021/jp804178w Mathe, 2013, Electrical and dielectric properties of nano crystalline ni–co spinel ferrite, Mater. Res. Bull., 48, 1415, 10.1016/j.materresbull.2012.12.019 Ashok, 2019, Effect of sn on magnetic and dielectric properties of ni-co spinel ferrite over LF and MF range, Trans. Indian Ceram. Soc., 78, 131, 10.1080/0371750X.2019.1632226 Hamdaoui, 2019, Cd-doping effect on morphologic, structural, magnetic and electrical properties of ni0.6−xcdxmg0.4fe2 O4 spinel ferrite (0≤ x≤ 0.4), J. Alloys Compds., 803, 964, 10.1016/j.jallcom.2019.06.339 Rahimi, 2014, Structural and magnetic characterizations of cd substituted nickel ferrite nanoparticles, Ceram. Int., 40, 15569, 10.1016/j.ceramint.2014.07.033 Saha, 2009, Resistivity and curie temperature of co doped cdni perminvar ferrite, J. Bangladesh. Acad. Sci., 32 Sathishkumar, 2013, Magnetic and dielectric properties of cadmium substituted nickel cobalt nanoferrites, J. Mater. Sci., Mater. Electron., 24, 1057, 10.1007/s10854-012-0878-3 Dwevedi, 2009, Magnetoreactance studies in rare earth-doped Ni ferrite, IEEE Trans. Magn., 45, 4253, 10.1109/TMAG.2009.2023869 Samad, 2019, Dielectric and magnetic properties of rare-earth-doped cobalt ferrites and their first-order reversal curve analysis, Appl. Phys. A, 125, 503, 10.1007/s00339-019-2804-5 Almessiere, 2019, Nd3+ ion-substituted Co1-2xNixMnxFe2-yNdyO4 nanoparticles: Structural, morphological, and magnetic investigations, J. Inorg. Organomet. Polym. Mater., 29, 783, 10.1007/s10904-018-1052-z Kokare, 2018, Effect of nd3+ doping on structural and magnetic properties of ni 0.5 co0.5 Fe2 O4 nanocrystalline ferrites synthesized by sol–gel auto combustion method, J. Alloys Compd., 748, 10.1016/j.jallcom.2018.03.168 Almessiere, 2019, Effect of nb(3+) substitution on the structural, magnetic, and optical properties of co(0.5)ni(0.5)fe2 O4 nanoparticles, Nanomater. (Basel, Switzerland), 9, 430, 10.3390/nano9030430 Jing, 2015, Width-controlled m-type hexagonal strontium ferrite (srfe12o19) nanoribbons with high saturation magnetization and superior coercivity synthesized by electrospinning, Sci. Rep., 5, 15089, 10.1038/srep15089 Pan, 2015, A novel method to fabricate CoFe2O4/SrFe12O19 composite ferrite nanofibers with enhanced exchange coupling effect, Nanoscale Res. Lett., 10, 131, 10.1186/s11671-015-0829-z Patil, 2010, Effect on zinc substitution on structural and elastic properties of cobalt ferrite, J. Alloy. Compd., 488, 199, 10.1016/j.jallcom.2009.08.078 F. Alahmari, S. Rehman, M. Almessiere, F.A. Khan, Y. Slimani, A. Baykal, Synthesis of Ni0.5Co0.5−xCdxFe1.78Nd0.02 O4 (x ≤ 0.25) nanofibers by using electrospinning technique induce anti-cancer and anti-bacterial activities, J. Biomol. Struct. Dyn., http://dx.doi.org/10.1080/07391102.2020.1761880. Shirsath, 2013, Chemical tuning of structure formation and combustion process in cody0.1fe1.9o4 nanoparticles: influence@ph, J. Nanoparticle Res., 15, 1976, 10.1007/s11051-013-1976-8 Shirsath, 2018, Ferrites obtained by sol–gel method, 695 Shirsath, 2016, Switching of magnetic easy-axis using crystal orientation for large perpendicular coercivity in cofe2o4 thin film, Sci. Rep., 6, 30074, 10.1038/srep30074 Justin Joseyphus, 2006, Synthesis and magnetic properties of the size-controlled mn–zn ferrite nanoparticles by oxidation method, J. Phys. Chem. Solids, 67, 1510, 10.1016/j.jpcs.2005.11.015 Yadav, 2015, Distribution of cations in co1−x Mnx Fe2 O4 using xrd, magnetization and Mössbauer spectroscopy, J. Alloys Compd., 646, 550, 10.1016/j.jallcom.2015.05.270 Kumar, 2016, Structural and magnetic study of dysprosium substituted cobalt ferrite nanoparticles, J. Magn. Magn. Mater., 401, 16, 10.1016/j.jmmm.2015.09.077 Ok, 1976, Collective electron description of the conduction mechanism in mx Fe3−x O4, m = cd, zn, Phys. Rev. B, 14, 2956, 10.1103/PhysRevB.14.2956 Kumar, 2008, Mössbauer studies of Co0.5CdxFe2.5-xO4 (0.0 ⩽x ⩽0.5) ferrite, Physica B, 403, 3604, 10.1016/j.physb.2008.06.001 Karanjkar, 2013, Structural, Mössbauer and electrical properties of nickel cadmium ferrites, Ceram. Int., 39, 1757, 10.1016/j.ceramint.2012.08.022 Gorter, 1950, Magnetization in ferrites: saturation magnetization of ferrites with spinel structure, Nature, 165, 798, 10.1038/165798a0 Almessiere, 2019, The effect of nb substitution on magnetic properties of bafe12o19 nanohexaferrites, Ceram. Int., 45, 1691, 10.1016/j.ceramint.2018.10.048 Almessiere, 2019, Investigation of the effects of tm3+ on the structural, microstructural, optical, and magnetic properties of sr hexaferrites, Results Phys. Coey, 1987, Noncollinear spin structures, Can. J. Phys., 65, 1210, 10.1139/p87-197 Slimani, 2019, Effect of bimetallic (Ca, mg) substitution on magneto-optical properties of nife2o4 nanoparticles, Ceram. Int., 45, 6021, 10.1016/j.ceramint.2018.12.072 Pankhurst, 1991, Origin of the spin-canting anomaly in small ferrimagnetic particles, Phys. Rev. Lett., 67, 248, 10.1103/PhysRevLett.67.248 Almessiere, 2019, Nd 3+ ion-substituted co 1-2x ni x mn x fe 2- y nd y o 4 nanoparticles: structural, morphological, and magnetic investigations, J. Inorg. Organomet. Polym. Mater., 29, 783, 10.1007/s10904-018-1052-z Hankare, 2010, Effect of zinc substitution on structural and magnetic properties of copper ferrite, J. Alloys Compd., 501, 37, 10.1016/j.jallcom.2010.03.178 Chermahini, 2019, Low temperature sintering of magnetic ni0. 5co0. 5fe2o4 ceramics prepared from mechanochemically synthesized nanopowders, Ceram. Int., 45, 5491, 10.1016/j.ceramint.2018.12.005 Saffari, 2015, Effects of co-substitution on the structural and magnetic properties of nicoxfe2- xo4 ferrite nanoparticles, Ceram. Int., 41, 7352, 10.1016/j.ceramint.2015.02.038 D.B. Pawar, L. Ravangave, Sol-Gel Auto Combustion Synthesis of Gd 3 Doped Ni0. 5Co0. 5Fe2O4 Nanoparticles and Examinations of Magnetic Properties. Datt, 2016, Observation of magnetic anomalies in one-step solvothermally synthesized nickel–cobalt ferrite nanoparticles, Nanoscale, 8, 5200, 10.1039/C5NR06791J Belavi, 2012, Structural, electrical and magnetic properties of cadmium substituted nickel–copper ferrites, Mater. Chem. Phys., 132, 138, 10.1016/j.matchemphys.2011.11.009 Patil, 1998, Structure and magnetic properties of cd and ti/si substituted cobalt ferrites, Mater. Chem. Phys., 57, 86, 10.1016/S0254-0584(98)00202-8 Reddy, 2015, Effect of calcination temperature on cobalt substituted cadmium ferrite nanoparticles, J. Mater. Sci., Mater. Electron., 26, 5078, 10.1007/s10854-015-3031-2