An iterative immersed finite element method for an electric potential interface problem based on given surface electric quantity
Tài liệu tham khảo
Adjerid, 2009, p-th degree immersed finite element for boundary value problems with discontinuous coefficients, Appl. Numer. Math., 59, 1303, 10.1016/j.apnum.2008.08.005
Birdsall, 2005
Camp, 2006, Quadratic immersed finite element spaces and their approximation capabilities, Adv. Comput. Math., 24, 81, 10.1007/s10444-004-4139-8
Chou, 2010, Optimal convergence analysis of an immersed interface finite element method, Adv. Comput. Math., 33, 149, 10.1007/s10444-009-9122-y
Chu, 2011, Asymptotic boundary conditions for two-dimensional electrostatic field problems with immersed finite elements, Comput. Phys. Commun., 182, 2331, 10.1016/j.cpc.2011.06.014
Ewing, 1999, The immersed finite volume element methods for the elliptic interface problems, Math. Comput. Simul., 50, 63, 10.1016/S0378-4754(99)00061-0
Feng, 2014, Immersed finite element method for interface problems with algebraic multigrid solver, Commun. Comput. Phys., 15, 1045, 10.4208/cicp.150313.171013s
Gong, 2008, Immersed-interface finite-element methods for elliptic interface problems with non-homogeneous jump conditions, SIAM J. Numer. Anal., 46, 472, 10.1137/060666482
Gong, 2010, Immersed interface finite element methods for elasticity interface problems with non-homogeneous jump conditions, Numer. Math. Theory Methods Appl., 3, 23, 10.4208/nmtma.2009.m9001
He, 2009
He, 2008, Approximation capability of a bilinear immersed finite element space, Numer. Methods Partial Differ. Equ., 24, 1265, 10.1002/num.20318
He, 2009, A bilinear immersed finite volume element method for the diffusion equation with discontinuous coefficients, Commun. Comput. Phys., 6, 185, 10.4208/cicp.2009.v6.p185
He, 2010, Interior penalty discontinuous Galerkin methods with bilinear IFE for a second order elliptic equation with discontinuous coefficient, J. Syst. Sci. Complex., 23, 467, 10.1007/s11424-010-0141-z
He, 2011, Immersed finite element methods for elliptic interface problems with non-homogeneous jump conditions, Int. J. Numer. Anal. Model., 8, 284
He, 2012, The convergence of the bilinear and linear immersed finite element solutions to interface problems, Numer. Methods Partial Differ. Equ., 28, 312, 10.1002/num.20620
He, 2014, A selective immersed discontinuous Galerkin method for elliptic interface problems, Math. Methods Appl. Sci., 37, 983, 10.1002/mma.2856
He, 2013, Immersed finite element methods for parabolic equations with moving interface, Numer. Methods Partial Differ. Equ., 29, 619, 10.1002/num.21722
Kafafy, 2005, Three-dimensional immersed finite element methods for electric field simulation in composite materials, Int. J. Numer. Methods Eng., 64, 940, 10.1002/nme.1401
Kwak, 2010, An analysis of a broken p1-nonconforming finite element method for interface problems, SIAM J. Numer. Anal., 48, 2117, 10.1137/080728056
Li, 1997, The immersed interface method using a finite element formulation, Appl. Numer. Math., 27, 253, 10.1016/S0168-9274(98)00015-4
Li, 2004, An immersed finite element space and its approximation capability, Numer. Methods Partial Differ. Equ., 20, 338, 10.1002/num.10092
Li, 2003, New Cartesian grid methods for interface problems using the finite element formulation, Numer. Math., 96, 61, 10.1007/s00211-003-0473-x
Lin, 2001, A rectangular immersed finite element method for interface problems, vol. 7, 107
Lin, 2007, Error estimation of a class of quadratic immersed finite element methods for elliptic interface problems, Discrete Contin. Dyn. Syst., Ser. B, 7, 807
Lin, 2013, A method of lines based on immersed finite elements for parabolic moving interface problems, Adv. Appl. Math. Mech., 5, 548568, 10.4208/aamm.13-13S11
Lin, 2013, The immersed finite element method for parabolic problems with the Laplace transformation in time discretization, Int. J. Numer. Anal. Model., 10, 298
Lin, 2013, A locking-free immersed finite element method for planar elasticity interface problems, J. Comput. Phys., 247, 228247, 10.1016/j.jcp.2013.03.053
Lin, 2012, Linear and bilinear immersed finite elements for planar elasticity interface problems, J. Comput. Appl. Math., 236, 4681, 10.1016/j.cam.2012.03.012
Keidar, 2004, Modeling of a high-power thruster with anode layer, Phys. Plasmas, 11, 1715, 10.1063/1.1668642
Pollack, 2002
Riedler, 1997, Active spacecraft potential control, Space Sci. Rev., 79, 271, 10.1023/A:1004921614592
Sarkar, 1984, The electrostatic field of conducting bodies in multiple dielectric media, IEEE Trans. Microw. Theory Tech., 32, 1441, 10.1109/TMTT.1984.1132869
Sauter, 2006, Composite finite elements for elliptic boundary value problems with discontinuous coefficients, Computing, 77, 29, 10.1007/s00607-005-0150-2
J. Szabo, M. Sanchez, O. Batishchev, Numerical modeling of the near anode region in a tal thruster, in: 36th AIAA/ASME/ASE/ASEE Joint Propulsion Conference, July 2000.
J. Szabo, M. Sanchez, O. Batishchev, Particle-in-cell modeling of thruster with anode layer, in: 26th International Electric Propulsion Conference, October 1999.
Tausch, 1999, Capacitance extraction of 3-d conductor systems in dielectric media with high-permittivity ratios, IEEE Trans. Microw. Theory Tech., 47, 18, 10.1109/22.740070
Vallaghè, 2010, A trilinear immersed finite element method for solving the electroencephalography forward problem, SIAM J. Sci. Comput., 32, 2379, 10.1137/09075038X
J. Wang, X.-M. He, Y. Cao, Modeling spacecraft charging and charged dust particle interactions on lunar surface, in: Proceedings of the 10th Spacecraft Charging Technology Conference, Biarritz, France, 2007.
Wang, 2008, Modeling electrostatic levitation of dusts on lunar surface, IEEE Trans. Plasma Sci., 36, 2459, 10.1109/TPS.2008.2003016
Whipple, 2000, Potentials of surfaces in space, Rep. Prog. Phys., 44, 1197, 10.1088/0034-4885/44/11/002
Wu, 2011, Adaptive mesh refinement for elliptic interface problems using the non-conforming immersed finite element method, Int. J. Numer. Anal. Model., 8, 466
Xie, 2011, A finite element method for elasticity interface problems with locally modified triangulations, Int. J. Numer. Anal. Model., 8, 189
Zhang, 2013