An iterative immersed finite element method for an electric potential interface problem based on given surface electric quantity

Journal of Computational Physics - Tập 281 - Trang 82-95 - 2015
Yong Cao1, Yuchuan Chu1, Xiaoming He2, Tao Lin3
1Department of Mechanical Engineering & Automation, Harbin Institute of Technology, Shenzhen Graduate School, Shenzhen, Guangdong 518055, PR China
2Department of Mathematics and Statistics, Missouri University of Science and Technology, Rolla, MO 65409, USA
3Department of Mathematics, Virginia Tech, Blacksburg, VA 24061, USA

Tài liệu tham khảo

Adjerid, 2009, p-th degree immersed finite element for boundary value problems with discontinuous coefficients, Appl. Numer. Math., 59, 1303, 10.1016/j.apnum.2008.08.005 Birdsall, 2005 Camp, 2006, Quadratic immersed finite element spaces and their approximation capabilities, Adv. Comput. Math., 24, 81, 10.1007/s10444-004-4139-8 Chou, 2010, Optimal convergence analysis of an immersed interface finite element method, Adv. Comput. Math., 33, 149, 10.1007/s10444-009-9122-y Chu, 2011, Asymptotic boundary conditions for two-dimensional electrostatic field problems with immersed finite elements, Comput. Phys. Commun., 182, 2331, 10.1016/j.cpc.2011.06.014 Ewing, 1999, The immersed finite volume element methods for the elliptic interface problems, Math. Comput. Simul., 50, 63, 10.1016/S0378-4754(99)00061-0 Feng, 2014, Immersed finite element method for interface problems with algebraic multigrid solver, Commun. Comput. Phys., 15, 1045, 10.4208/cicp.150313.171013s Gong, 2008, Immersed-interface finite-element methods for elliptic interface problems with non-homogeneous jump conditions, SIAM J. Numer. Anal., 46, 472, 10.1137/060666482 Gong, 2010, Immersed interface finite element methods for elasticity interface problems with non-homogeneous jump conditions, Numer. Math. Theory Methods Appl., 3, 23, 10.4208/nmtma.2009.m9001 He, 2009 He, 2008, Approximation capability of a bilinear immersed finite element space, Numer. Methods Partial Differ. Equ., 24, 1265, 10.1002/num.20318 He, 2009, A bilinear immersed finite volume element method for the diffusion equation with discontinuous coefficients, Commun. Comput. Phys., 6, 185, 10.4208/cicp.2009.v6.p185 He, 2010, Interior penalty discontinuous Galerkin methods with bilinear IFE for a second order elliptic equation with discontinuous coefficient, J. Syst. Sci. Complex., 23, 467, 10.1007/s11424-010-0141-z He, 2011, Immersed finite element methods for elliptic interface problems with non-homogeneous jump conditions, Int. J. Numer. Anal. Model., 8, 284 He, 2012, The convergence of the bilinear and linear immersed finite element solutions to interface problems, Numer. Methods Partial Differ. Equ., 28, 312, 10.1002/num.20620 He, 2014, A selective immersed discontinuous Galerkin method for elliptic interface problems, Math. Methods Appl. Sci., 37, 983, 10.1002/mma.2856 He, 2013, Immersed finite element methods for parabolic equations with moving interface, Numer. Methods Partial Differ. Equ., 29, 619, 10.1002/num.21722 Kafafy, 2005, Three-dimensional immersed finite element methods for electric field simulation in composite materials, Int. J. Numer. Methods Eng., 64, 940, 10.1002/nme.1401 Kwak, 2010, An analysis of a broken p1-nonconforming finite element method for interface problems, SIAM J. Numer. Anal., 48, 2117, 10.1137/080728056 Li, 1997, The immersed interface method using a finite element formulation, Appl. Numer. Math., 27, 253, 10.1016/S0168-9274(98)00015-4 Li, 2004, An immersed finite element space and its approximation capability, Numer. Methods Partial Differ. Equ., 20, 338, 10.1002/num.10092 Li, 2003, New Cartesian grid methods for interface problems using the finite element formulation, Numer. Math., 96, 61, 10.1007/s00211-003-0473-x Lin, 2001, A rectangular immersed finite element method for interface problems, vol. 7, 107 Lin, 2007, Error estimation of a class of quadratic immersed finite element methods for elliptic interface problems, Discrete Contin. Dyn. Syst., Ser. B, 7, 807 Lin, 2013, A method of lines based on immersed finite elements for parabolic moving interface problems, Adv. Appl. Math. Mech., 5, 548568, 10.4208/aamm.13-13S11 Lin, 2013, The immersed finite element method for parabolic problems with the Laplace transformation in time discretization, Int. J. Numer. Anal. Model., 10, 298 Lin, 2013, A locking-free immersed finite element method for planar elasticity interface problems, J. Comput. Phys., 247, 228247, 10.1016/j.jcp.2013.03.053 Lin, 2012, Linear and bilinear immersed finite elements for planar elasticity interface problems, J. Comput. Appl. Math., 236, 4681, 10.1016/j.cam.2012.03.012 Keidar, 2004, Modeling of a high-power thruster with anode layer, Phys. Plasmas, 11, 1715, 10.1063/1.1668642 Pollack, 2002 Riedler, 1997, Active spacecraft potential control, Space Sci. Rev., 79, 271, 10.1023/A:1004921614592 Sarkar, 1984, The electrostatic field of conducting bodies in multiple dielectric media, IEEE Trans. Microw. Theory Tech., 32, 1441, 10.1109/TMTT.1984.1132869 Sauter, 2006, Composite finite elements for elliptic boundary value problems with discontinuous coefficients, Computing, 77, 29, 10.1007/s00607-005-0150-2 J. Szabo, M. Sanchez, O. Batishchev, Numerical modeling of the near anode region in a tal thruster, in: 36th AIAA/ASME/ASE/ASEE Joint Propulsion Conference, July 2000. J. Szabo, M. Sanchez, O. Batishchev, Particle-in-cell modeling of thruster with anode layer, in: 26th International Electric Propulsion Conference, October 1999. Tausch, 1999, Capacitance extraction of 3-d conductor systems in dielectric media with high-permittivity ratios, IEEE Trans. Microw. Theory Tech., 47, 18, 10.1109/22.740070 Vallaghè, 2010, A trilinear immersed finite element method for solving the electroencephalography forward problem, SIAM J. Sci. Comput., 32, 2379, 10.1137/09075038X J. Wang, X.-M. He, Y. Cao, Modeling spacecraft charging and charged dust particle interactions on lunar surface, in: Proceedings of the 10th Spacecraft Charging Technology Conference, Biarritz, France, 2007. Wang, 2008, Modeling electrostatic levitation of dusts on lunar surface, IEEE Trans. Plasma Sci., 36, 2459, 10.1109/TPS.2008.2003016 Whipple, 2000, Potentials of surfaces in space, Rep. Prog. Phys., 44, 1197, 10.1088/0034-4885/44/11/002 Wu, 2011, Adaptive mesh refinement for elliptic interface problems using the non-conforming immersed finite element method, Int. J. Numer. Anal. Model., 8, 466 Xie, 2011, A finite element method for elasticity interface problems with locally modified triangulations, Int. J. Numer. Anal. Model., 8, 189 Zhang, 2013