Use of secondary-treated wastewater for the production of Muriellopsis sp.
Tóm tắt
In this paper, the use of secondary-treated wastewater as the culture medium for the production of Muriellopsis sp. microalgal biomass is analyzed. Using this wastewater, a maximum biomass productivity of 0.5 g l−1 day−1 was measured, it being only 38 % lower than that achieved using the standard culture medium. Due to the low nitrogen content of secondary-treated wastewater, cultures produced in a medium containing a high percentage of it become nitrate-limited, thus the quantum yield reduces by up to 0.38 g E−1—this compares to 0.67 g E−1 when using a standard culture medium. On the other hand, nitrate limitation enhances the accumulation of lipids and carbohydrates, with values measured at 33 and 66 % dry weight, respectively. It was also demonstrated that secondary-treated wastewater does not have any toxic effect on the growth of Muriellopsis sp. in spite of nitrogen being in the form of ammonium rather than in nitrate. Moreover, the secondary-treated wastewater was depurated when used to produce Muriellopsis sp., with the outlet biological oxygen demand and chemical oxygen demand being lower than at the inlet; the nitrate and phosphate concentrations were zero. Therefore, Muriellopsis sp. production using secondary-treated wastewater allows a reduction in the process cost by decreasing freshwater and fertilizer use, as well as by depurating the water, thus greatly enhancing process sustainability.
Tài liệu tham khảo
Acién FG, Fernández JM, Magán JJ, Molina E (2012) Production cost of a real microalgae production plant and strategies to reduce it. Biotechnol Adv 30(6):1344–1353. doi:10.1016/j.biotechadv.2012.02.005
Aslan S, Kapdan IK (2006) Batch kinetics of nitrogen and phosphorus removal from synthetic wastewater by algae. Ecol Eng 28:64–70
Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25:294–306
Craggs RJ, McAuley PJ, Smith VJ (1997) Wastewater nutrient removal by marine microalgae grown on a corrugated raceway. Water Res 31:1701–1707
Del Campo JA, Moreno J, Rodríguez H, Vargas MA, Rivas J, Guerrero MG (2000) Carotenoid content of chlorophycean microalgae. Factors determining lutein accumulation in Muriellopsis sp. (Chlorophyta). J Biotechnol 76:51–59
Del Río E, Acién FG, García-Malea MC, Rivas J, Molina-Grima E, Guerrero MG (2005) Efficient one-step production of astaxanthin by the microalga Haematococcus pluvialis in continuous culture. Biotechnol Bioeng 91:808–815
Godos I, Vargas VA, Blanco S, González MCG, Soto R, García-Encina PA, Becares E, Muñoz R (2010) A comparative evaluation of microalgae for the degradation of piggery wastewater under photosynthetic oxygenation. Bioresour Technol 101:5150–5158
González C, Marciniak J, Villaverde S, García-Encina PA, Muñoz R (2008) Microalgae-based processes for the biodegradation of pretreated piggery wastewaters. Appl Microbiol Biotechnol 80:891–898
Grima EM, Camacho FG, Pérez JAS, Fernéndez FGA, Sevilla JMF (1997) Evaluation of photosynthetic efficiency in microalgal cultures using averaged irradiance. Enz Microb Technol 21:375–381
Hernández E, Olguín EJ (2002) Biosorption of heavy metals influenced by the chemical composition of Spirulina sp. (Arthrospira) biomass. Environ Technol 23:1369–1377
Hu Q (2004) Environmental effects on cell composition. In: Richmond A (ed) Handbook of microalgal culture: biotechnology and applied phycology. Blackwell Science, Oxford, pp 83–93
Huesemann M, Benemann JR (2009) Biofuels from microalgae: review of products, process and potential, with special focus on Dunaliella sp. In: Ben-Amotz A et al (eds) The alga Dunaliella: biodiversity, physiology, genomics and biotechnology. Science, New Hampshire
Klausmeler CA, Litchman E, Daufreshna T, Levin SA (2004) Optimal nitrogen-to-phosphorus stoichiometry of phytoplankton. Nature 429:171–174
Kochert G (1978) Handbook of phycological methods. Cambridge University Press, London
Kumar A, Ergas S, Yuan X, Sahu A, Zhang Q, Dewulf J, Malcata FX, van Langenhove H (2010) Enhanced CO2 fixation and biofuel production via microalgae: recent developments and future directions. Trends Biotechnol 28:371–380
Lardon L, Hélias A, Sialve B, Steyer J, Bernard O (2009) Life-cycle assessment of biodiesel production from microalgae. Environ Sci Technol 43:6475–6481
Li Y, Chen Y, Chen P, Min M, Zhou W, Martinez B, Zhu J, Ruan R (2011) Characterization of a microalga Chlorella sp. well adapted to highly concentrated municipal wastewater for nutrient removal and biodiesel production. Bioresour Technol 102:5138–5144
Mata TM, Martins AA, Caetano NS (2010) Microalgae for biodiesel production and other applications: a review. Renew Sust Energ Rev 14:217–232
McGinn PJ, Dickinson KE, Bhatti S, Frigon J, Guiot SR, O'Leary SJB (2011) Integration of microalgae cultivation with industrial waste remediation for biofuel and bioenergy production: opportunities and limitations. Photosynth Res 109:231–247
Ministerio de Agricultura (1982) Métodos oficiales de análisis: suelos y aguas. Ed. Ministerio de Agricultura, Madrid
Muñoz R, Guieysse B (2006) Algal-bacterial processes for the treatment of hazardous contaminants: a review. Water Res 40:2799–2815
Mutanda T, Karthikeyan S, Bux F (2011) The utilization of post-chlorinated municipal domestic wastewater for biomass and lipid production by Chlorella spp. under batch conditions. Appl Biochem Biotechnol 164:1126–1138
Olguín EJ (2003) Phycoremediation: key issues for cost-effective nutrient removal processes. Biotechnol Adv 22:81–91
Olguín EJ (2012) Dual purpose microalgae-bacteria-based systems that treat wastewater and produce biodiesel and chemical products within a Biorefinery. Biotechnol Adv 30:1031–1046
Olguín EJ, Sánchez-Galván G (2010) Aquatic phytoremediation: novel insights in tropical and subtropical regions. Pure Appl Chem 82:27–38
Olguín EJ, Galicia S, Mercado G, Pérez T (2003) Annual productivity of Spirulina (Arthrospira) and nutrient removal in a pig wastewater recycling process under tropical conditions. J Appl Phycol 15:249–257
Órpez R, Martínez ME, Hodaifa G, El Yousfi F, Jbari N, Sánchez S (2009) Growth of the microalga Botryococcus braunii in secondarily treated sewage. Desalination 246:625–630
Park JBK, Craggs RJ, Shilton AN (2011) Wastewater treatment high rate algal ponds for biofuel production. Bioresour Technol 102:35–42
Pittman JK, Dean AP, Osundeko O (2011) The potential of sustainable algal biofuel production using wastewater resources. Bioresour Technol 102:17–25
Rodolfi L, Zittelli GC, Bassi N, Padovani G, Biondi N, Bonini G, Tredici MR (2009) Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnol Bioeng 102:100–112
Rodríguez-Ruiz J, Belarbi EH, Sánchez JLG, Alonso DL (1998) Rapid simultaneous lipid extraction and transesterification for fatty acid analyses. Biotechnol Tech 12:689–691
Rosenberg JN, Oyler GA, Wilkinson L, Betenbaugh MJ (2008) A green light for engineered algae: redirecting metabolism to fuel a biotechnology revolution. Curr Opin Biotechnol 19:430–436
Schenk PM, Thomas-hall SR, Stephens E, Marx UC, Mussgnug JH, Posten C, Kruse O, Hankamer B (2008) Second generation biofuels: high-efficiency microalgae for biodiesel production. Bioenergy Res 1:20–43
Singh J, Gu S (2010) Commercialization potential of microalgae for biofuels production. Renew Sust Energ Rev 14:2596–2610
Spolaore P, Joannis-Cassan C, Duran E, Isambert A (2006) Commercial applications of microalgae. J Biosci Bioeng 101:87–96
Sydney EB, da Silva TE, Tokarski A, Novak AC, de Carvalho JC, Woiciecohwski AL, Larroche C, Soccol CR (2011) Screening of microalgae with potential for biodiesel production and nutrient removal from treated domestic sewage. Appl Energy 88:3291–3294
Takagi M, Watanabe K, Yamaberi K, Yoshida T (2000) Limited feeding of potassium nitrate for intracellular lipid and triglyceride accumulation of Nannochloris sp. UTEX LB1999. Appl Microbiol Biotechnol 54:112–117
Wang L, Li Y, Chen P, Min M, Chen Y, Zhu J, Ruan RR (2010) Anaerobic digested dairy manure as a nutrient supplement for cultivation of oil-rich green microalgae Chlorella sp. Bioresour Technol 101:2623–2628