Multi-proteomic approach to predict specific cardiovascular events in patients with diabetes and myocardial infarction: findings from the EXAMINE trial

Clinical Research in Cardiology - Tập 110 - Trang 1006-1019 - 2020
João Pedro Ferreira1, Abhinav Sharma2, Cyrus Mehta3,4, George Bakris5, Patrick Rossignol1, William B. White6, Faiez Zannad1
1Université de Lorraine, Centre D’Investigation Clinique- Plurithématique Inserm CIC-P 1433, Inserm U1116, CHRU Nancy Hopitaux de Brabois, F-CRIN INI-CRCT (Cardiovascular and Renal Clinical Trialists), Nancy, France
2Division of Cardiology, McGill University Health Centre, Montreal, Canada
3Cytel Corporation, Cambridge, USA
4Harvard T.H. Chan School of Public Health, Boston, USA
5Department of Medicine, American Heart Association Comprehensive Hypertension Center, University of Chicago, Chicago, USA
6Calhoun Cardiology Center, University of Connecticut School of Medicine, Farmington, USA

Tóm tắt

Patients with diabetes who had a recent myocardial infarction (MI) are at high risk of cardiovascular events. Therefore, risk assessment is important for treatment and shared decisions. We used data from EXAMINE trial to investigate whether a multi-proteomic approach would provide specific proteomic signatures and also improve the prognostic capacity for determining the risk of cardiovascular death, MI, stroke, heart failure [HF], all-cause death, and combinations of these outcomes. 93 circulating proteins (92 from the Olink® CVDII plus troponin) were assessed in 5131 patients. Cox, competing risks, and reclassification measures were applied. The clinical model showed good discrimination and calibration for all outcomes. On top of the clinical model that included age, sex, smoking, diabetes duration, history of MI (prior to the index MI of inclusion), history of HF hospitalization, history of stroke, atrial fibrillation, hypertension, systolic blood pressure, statin therapy, estimated glomerular filtration rate, and study treatment (alogliptin or placebo), troponin and BNP added prognostic information to the composite of cardiovascular death, MI, or stroke (∆C-index + 5%) and cardiovascular death alone (∆C-index + 7%). Troponin, BNP, and TRAILR2 added prognostic information on all-cause death and the composite of cardiovascular death or HF hospitalization. HF hospitalization alone was improved by adding BNP and Gal-9. For MI, troponin, FGF23, and AMBP added prognostic value; whereas for stroke, only troponin added prognostic value (multi-proteomics improved C-index > 3% [p < 0.001] for all the studied outcomes). The addition of the final biomarker selection to the clinical model improved event reclassification (cNRI from + 23% to + 64%). Specifically, the addition of the biomarkers allowed a better classification of patients at low risk (as having “true” low risk) and patients and high risk (as having “true” high risk). These results were consistent for all the studied outcomes with even more marked differences in the fatal events. The addition of multi-proteomic biomarkers to a clinical model in this population with diabetes and a recent MI allowed a better risk prediction and event reclassification, potentially helping for better risk assessment and targeted treatment decisions. T2D type 2 diabetes, MI myocardial infarction, CV cardiovascular, HFH heart failure hospitalization, Δ delta, cNRI continuous net reclassification index, BNP brain natriuretic peptide, TRAILR2 trail receptor 2 (or death receptor 5), Gal-9 galectin-9, FGF23 fibroblast growth factor 23.

Tài liệu tham khảo

Ogurtsova K, da Rocha Fernandes JD, Huang Y, Linnenkamp U, Guariguata L, Cho NH, Cavan D, Shaw JE, Makaroff LE (2017) IDF Diabetes Atlas: Global estimates for the prevalence of diabetes for 2015 and 2040. Diabetes Res Clin Pract 128:40–50 Haffner SM, Lehto S, Ronnemaa T, Pyorala K, Laakso M (1998) Mortality from coronary heart disease in subjects with type 2 diabetes and in nondiabetic subjects with and without prior myocardial infarction. N Engl J Med 339(4):229–234 Gaede P, Lund-Andersen H, Parving HH, Pedersen O (2008) Effect of a multifactorial intervention on mortality in type 2 diabetes. N Engl J Med 358(6):580–591 Ettehad D, Emdin CA, Kiran A, Anderson SG, Callender T, Emberson J, Chalmers J, Rodgers A, Rahimi K (2016) Blood pressure lowering for prevention of cardiovascular disease and death: a systematic review and meta-analysis. Lancet 387(10022):957–967 Fitchett D, Zinman B, Wanner C, Lachin JM, Hantel S, Salsali A, Johansen OE, Woerle HJ, Broedl UC, Inzucchi SE (2016) Heart failure outcomes with empagliflozin in patients with type 2 diabetes at high cardiovascular risk: results of the EMPA-REG OUTCOME(R) trial. Eur Heart J 37(19):1526–1534 Sharma A, Cooper LB, Fiuzat M, Mentz RJ, Ferreira JP, Butler J, Fitchett D, Moses AC, O'Connor C, Zannad F (2018) Antihyperglycemic Therapies to Treat Patients With Heart Failure and Diabetes Mellitus. JACC Heart Fail 6(10):813–822 Smolina K, Wright FL, Rayner M, Goldacre MJ (2012) Determinants of the decline in mortality from acute myocardial infarction in England between 2002 and 2010: linked national database study. BMJ 344:d8059 Sabatine MS, Giugliano RP, Keech AC, Honarpour N, Wiviott SD, Murphy SA, Kuder JF, Wang H, Liu T, Wasserman SM, Sever PS, Pedersen TR (2017) Evolocumab and Clinical Outcomes in Patients with Cardiovascular Disease. N Engl J Med 376(18):1713–1722 Ferreira JP, Girerd N, Alshalash S, Konstam MA, Zannad F (2016) Antithrombotic therapy in heart failure patients with and without atrial fibrillation: update and future challenges. Eur Heart J. https://doi.org/10.1093/eurheartj/ehw213 Cameron C, Coyle D, Richter T, Kelly S, Gauthier K, Steiner S, Carrier M, Coyle K, Bai A, Moulton K, Clifford T, Wells G (2014) Systematic review and network meta-analysis comparing antithrombotic agents for the prevention of stroke and major bleeding in patients with atrial fibrillation. BMJ Open 4(6):e004301 Pocock SJ, Ariti CA, McMurray JJ, Maggioni A, Kober L, Squire IB, Swedberg K, Dobson J, Poppe KK, Whalley GA, Doughty RN (2013) Predicting survival in heart failure: a risk score based on 39 372 patients from 30 studies. Eur Heart J 34(19):1404–1413 Voors AA, Ouwerkerk W, Zannad F, van Veldhuisen DJ, Samani NJ, Ponikowski P, Ng LL, Metra M, Ter Maaten JM, Lang CC, Hillege HL, van der Harst P, Filippatos G, Dickstein K, Cleland JG, Anker SD, Zwinderman AH (2017) Development and validation of multivariable models to predict mortality and hospitalization in patients with heart failure. Eur J Heart Fail. https://doi.org/10.1002/ejhf.785 Wolsk E, Claggett B, Pfeffer MA, Diaz R, Dickstein K, Gerstein HC, Lawson FC, Lewis EF, Maggioni AP, McMurray JJV, Probstfield JL, Riddle MC, Solomon SD, Tardif JC, Kober L (2017) Role of B-Type Natriuretic Peptide and N-Terminal Prohormone BNP as Predictors of Cardiovascular Morbidity and Mortality in Patients With a Recent Coronary Event and Type 2 Diabetes Mellitus. J Am Heart Assoc. https://doi.org/10.1161/JAHA.116.004743 Everett BM, Brooks MM, Vlachos HE, Chaitman BR, Frye RL, Bhatt DL (2015) Troponin and Cardiac Events in Stable Ischemic Heart Disease and Diabetes. N Engl J Med 373(7):610–620 White WB, Cannon CP, Heller SR, Nissen SE, Bergenstal RM, Bakris GL, Perez AT, Fleck PR, Mehta CR, Kupfer S, Wilson C, Cushman WC, Zannad F (2013) Alogliptin after acute coronary syndrome in patients with type 2 diabetes. N Engl J Med 369(14):1327–1335 Zannad F, Cannon CP, Cushman WC, Bakris GL, Menon V, Perez AT, Fleck PR, Mehta CR, Kupfer S, Wilson C, Lam H, White WB (2015) Heart failure and mortality outcomes in patients with type 2 diabetes taking alogliptin versus placebo in EXAMINE: a multicentre, randomised, double-blind trial. Lancet 385(9982):2067–2076 White WB, Bakris GL, Bergenstal RM, Cannon CP, Cushman WC, Fleck P, Heller S, Mehta C, Nissen SE, Perez A, Wilson C, Zannad F (2011) EXamination of cArdiovascular outcoMes with alogliptIN versus standard of carE in patients with type 2 diabetes mellitus and acute coronary syndrome (EXAMINE): a cardiovascular safety study of the dipeptidyl peptidase 4 inhibitor alogliptin in patients with type 2 diabetes with acute coronary syndrome. Am Heart J 162(4):620–626.e1 Hwang YC, Morrow DA, Cannon CP, Liu Y, Bergenstal R, Heller S, Mehta C, Cushman W, Bakris GL, Zannad F, White WB (2018) High-sensitivity C-reactive protein, low-density lipoprotein cholesterol and cardiovascular outcomes in patients with type 2 diabetes in the EXAMINE (Examination of Cardiovascular Outcomes with Alogliptin versus Standard of Care) trial. Diabetes Obes Metab 20(3):654–659 White WB, Jalil F, Cushman WC, Bakris GL, Bergenstal R, Heller SR, Liu Y, Mehta C, Zannad F, Cannon CP (2018) Average Clinician-Measured Blood Pressures and Cardiovascular Outcomes in Patients With Type 2 Diabetes Mellitus and Ischemic Heart Disease in the EXAMINE Trial. J Am Heart Assoc 7(20):e009114 Cavender MA, White WB, Jarolim P, Bakris GL, Cushman WC, Kupfer S, Gao Q, Mehta CR, Zannad F, Cannon CP, Morrow DA (2017) Serial Measurement of High-Sensitivity Troponin I and Cardiovascular Outcomes in Patients With Type 2 Diabetes Mellitus in the EXAMINE Trial (Examination of Cardiovascular Outcomes With Alogliptin Versus Standard of Care). Circulation 135(20):1911–1921 Ferreira JP, Girerd N, Pellicori P, Duarte K, Girerd S, Pfeffer MA, McMurray JJ, Pitt B, Dickstein K, Jacobs L, Staessen JA, Butler J, Latini R, Masson S, Mebazaa A, Rocca HP, Delles C, Heymans S, Sattar N, Jukema JW, Cleland JG, Zannad F, Rossignol P (2016) Renal function estimation and Cockroft-Gault formulas for predicting cardiovascular mortality in population-based, cardiovascular risk, heart failure and post-myocardial infarction cohorts: The Heart 'OMics' in AGEing (HOMAGE) and the high-risk myocardial infarction database initiatives. BMC Med 14(1):181 Green GH, Diggle PJ (2007) On the operational characteristics of the Benjamini and Hochberg False Discovery Rate procedure. Stat Appl Genet Mol Biol. https://doi.org/10.2202/1544-6115.1302 Harrell F (2001) Regression modeling strategies: with applications to linear models, logistic regression, and survival analysis. Springer, New York Zhu H, Ibrahim JG, Chen Q (2014) Bayesian Case-deletion Model Complexity and Information Criterion. Stat Interface 7(4):531–542 Leening MJ, Vedder MM, Witteman JC, Pencina MJ, Steyerberg EW (2014) Net reclassification improvement: computation, interpretation, and controversies: a literature review and clinician's guide. Ann Intern Med 160(2):122–131 Jp F, Rj G (1999) A proportional hazards model for the subdistribution of a competing risk. J Am Stat Assoc 94:496–509 de Lemos JA, Drazner MH, Omland T, Ayers CR, Khera A, Rohatgi A, Hashim I, Berry JD, Das SR, Morrow DA, McGuire DK (2010) Association of troponin T detected with a highly sensitive assay and cardiac structure and mortality risk in the general population. JAMA 304(22):2503–2512 Sharma A, Vaduganathan M, Ferreira JP, Liu Y, Bakris GL, Cannon CP, White WB, Zannad F (2020) Clinical and Biomarker Predictors of Expanded Heart Failure Outcomes in Patients With Type 2 Diabetes Mellitus After a Recent Acute Coronary Syndrome: Insights From the EXAMINE Trial. J Am Heart Assoc 9(1):e012797 Huelsmann M, Neuhold S, Resl M, Strunk G, Brath H, Francesconi C, Adlbrecht C, Prager R, Luger A, Pacher R, Clodi M (2013) PONTIAC (NT-proBNP selected prevention of cardiac events in a population of diabetic patients without a history of cardiac disease): a prospective randomized controlled trial. J Am Coll Cardiol 62(15):1365–1372 Ramamurthy V, Yamniuk AP, Lawrence EJ, Yong W, Schneeweis LA, Cheng L, Murdock M, Corbett MJ, Doyle ML, Sheriff S (2015) The structure of the death receptor 4-TNF-related apoptosis-inducing ligand (DR4-TRAIL) complex. Acta Crystallogr F Struct Biol Commun 71(Pt 10):1273–1281 Hymowitz SG, Christinger HW, Fuh G, Ultsch M, O'Connell M, Kelley RF, Ashkenazi A, de Vos AM (1999) Triggering cell death: the crystal structure of Apo2L/TRAIL in a complex with death receptor 5. Mol Cell 4(4):563–571 Skau E, Henriksen E, Wagner P, Hedberg P, Siegbahn A, Leppert J (2017) GDF-15 and TRAIL-R2 are powerful predictors of long-term mortality in patients with acute myocardial infarction. Eur J Prev Cardiol 24(15):1576–1583 Ridker PM, Luscher TF (2014) Anti-inflammatory therapies for cardiovascular disease. Eur Heart J 35(27):1782–1791 Ferreira JP, Verdonschot J, Collier T, Wang P, Pizard A, Bar C, Bjorkman J, Boccanelli A, Butler J, Clark A, Cleland JG, Delles C, Diez J, Girerd N, Gonzalez A, Hazebroek M, Huby AC, Jukema W, Latini R, Leenders J, Levy D, Mebazaa A, Mischak H, Pinet F, Rossignol P, Sattar N, Sever P, Staessen JA, Thum T, Vodovar N, Zhang ZY, Heymans S, Zannad F (2019) Proteomic Bioprofiles and Mechanistic Pathways of Progression to Heart Failure. Circ Heart Fail 12(5):e005897 He XW, Li WL, Li C, Liu P, Shen YG, Zhu M, Jin XP (2017) Serum levels of galectin-1, galectin-3, and galectin-9 are associated with large artery atherosclerotic stroke. Sci Rep 7:40994 Panwar B, Judd SE, Wadley VG, Jenny NS, Howard VJ, Safford MM, Gutierrez OM (2018) Association of Fibroblast Growth Factor 23 With Risk of Incident Coronary Heart Disease in Community-Living Adults. JAMA Cardiol 3(4):318–325 Hao H, Li X, Li Q, Lin H, Chen Z, Xie J, Xuan W, Liao W, Bin J, Huang X, Kitakaze M, Liao Y (2016) FGF23 promotes myocardial fibrosis in mice through activation of beta-catenin. Oncotarget 7(40):64649–64664 Liu H, Luo D, Qiu Y, Huang Y, Chen C, Song X, Gao L, Zhou Y (2019) The Effect of AMBP SNPs, Their Haplotypes, and Gene-Environment Interactions on the Risk of Atherothrombotic Stroke Among the Chinese Population. Genet Test Mol Biomarkers 23(7):487–494 Wan X, Zhang L, Gu H, Wang S, Liu X (2019) The Association of Serum hsCRP and Urinary Alpha1-Microglobulin in Patients with Type 2 Diabetes Mellitus. Biomed Res Int 2019:6364390 Inzucchi SE, Zinman B, Fitchett D, Wanner C, Ferrannini E, Schumacher M, Schmoor C, Ohneberg K, Johansen OE, George JT, Hantel S, Bluhmki E, Lachin JM (2018) How Does Empagliflozin Reduce Cardiovascular Mortality? Insights From a Mediation Analysis of the EMPA-REG OUTCOME Trial. Diabetes Care 41(2):356–363 Hernandez AF, Green JB, Janmohamed S, D'Agostino RB, Granger CB, Jones NP, Leiter LA, Rosenberg AE, Sigmon KN, Somerville MC, Thorpe KM, McMurray JJV, Del Prato S (2018) Albiglutide and cardiovascular outcomes in patients with type 2 diabetes and cardiovascular disease (Harmony Outcomes): a double-blind, randomised placebo-controlled trial. Lancet 392(10157):1519–1529 Cosentino F, Grant PJ, Aboyans V, Bailey CJ, Ceriello A, Delgado V, Federici M, Filippatos G, Grobbee DE, Hansen TB, Huikuri HV, Johansson I, Juni P, Lettino M, Marx N, Mellbin LG, Ostgren CJ, Rocca B, Roffi M, Sattar N, Seferovic PM, Sousa-Uva M, Valensi P, Wheeler DC (2020) 2019 ESC Guidelines on diabetes, pre-diabetes, and cardiovascular diseases developed in collaboration with the EASD. Eur Heart J 41(2):255–323 Disease C, Management R (2020) Standards of Medical Care in Diabetes-2020. Diabetes Care 43(Suppl 1):S111–s134 Cooney MT, Dudina AL, Graham IM (2009) Value and limitations of existing scores for the assessment of cardiovascular risk: a review for clinicians. J Am Coll Cardiol 54(14):1209–1227