On the determination of crystallinity and cellulose content in plant fibres
Tóm tắt
A comparative study of cellulose crystallinity based on the sample crystallinity and the cellulose content in plant fibres was performed for samples of different origin. Strong acid hydrolysis was found superior to agricultural fibre analysis and comprehensive plant fibre analysis for a consistent determination of the cellulose content. Crystallinity determinations were based on X-ray powder diffraction methods using side-loaded samples in reflection (Bragg-Brentano) mode. Rietveld refinements based on the recently published crystal structure of cellulose Iβ followed by integration of the crystalline and amorphous (background) parts were performed. This was shown to be straightforward to use and in many ways advantageous to traditional crystallinity determinations using the Segal or the Ruland–Vonk methods. The determined cellulose crystallinities were 90–100 g/100 g cellulose in plant-based fibres and 60–70 g/100 g cellulose in wood based fibres. These findings are significant in relation to strong fibre composites and bio-ethanol production.
Tài liệu tham khảo
Alexander L.E. (1969). X-ray diffraction methods in polymer science. Wiley-Interscience, New York
Andersson S., Serimaa R., Paakkari T., Saranpää P. and Pesonen E. (2003). Crystallinity of wood and the size of cellulose crystallites in Norway spruce (Picea abies). J. Wood Sci. 49:531–537
Bardage S., Donaldson L., Tokoh C. and Daniel G. 2004. Ultrastructure of the cell wall of unbeaten Norway spruce pulp fibre surfaces. Nordic Pulp Paper Res. J. 19(4):448–452
Browning B.L. (1967). Methods of wood chemistry. Interscience Publishers, A division of John Wiley & Sons, New York
Buschle-Diller G. and Zeronian S.H. (1992). Enhancing the reactivity and strength of cotton fibres. J. Appl. Polym. Sci. 45(6):967–979
Debye P. (1915). Zerstreuung von Röntgenstrahlen. Ann. Phys. 46:809–823
De Souza I.J., Bouchard J., Methot M., Berry R. and Argyropoulos D.S. (2002). Carbohydrates in oxygen delignification. Part I: Changes in cellulose crystallinity. J. Pulp Paper Sci. 28(5):167–170
Felby C., Klinke H.B., Olsen H.S. and Thomsen A.B. (2003). Ethanol from wheat straw cellulose by wet oxidation pretreatment and simultaneous saccharification and fermentation. ACS Symposium Series 855:157–174
Fink H.P. and Walenta E. (1994). Röntgenbeugungsuntersuchungen zur übermolekularen Struktur von Cellulose im Verarbeitungsprozeß. Papier 48(12):739–748
Finkenstadt V.L. and Millane R.P. (1998). Crystal structure of Valonia cellulose Iβ. Macromolecules 31(22):7776–7783
Goering H.K. and Van Soest P.J. (1970). Forage fiber analyses (apparatus, reagents, procedures and some applications). Agricultural Research Service, USDA Washington DC
Hepworth D.G., Bruce D.M., Vincent J.F.V. and Jeronimidis G. (2000). The manufacture and mechanical testing of thermosetting natural fibre composites. J. Mater. Sci. 35(2):293–298
Howard C.J. and Hill R.J. 1986. LHMP: a computer program for Rietveld analysis of fixed wavelength X-ray and neutron powder diffraction patterns. AAEC (now ANSTO) Report M112. Lucas Heights Research Laboratory
Kaar W.E., Cool L.G., Merriman M.M. and Brink D.L. (1991). The complete analysis of wood polysaccharides using HPLC. J. Wood Chem. Technol. 11(4):447–463
Klinke H.B., Lilholt H., Toftegaard H., Andersen T.L., Schmidt A.S. and Thomsen A.B. 2001. Wood and plant fibre reinforced polypropylene composites. In 1st world conference on biomass for energy and industry. James & James (Science Publishers), pp. 1082–1085
Koyama M., Helbert W., Imai T., Sugiyama J. and Henrissat B. (1997). Parallel-up structure evidences the molecular directionality during biosynthesis of bacterial cellulose. Proceedings of the National Academy of Sciences of the United States of America 94(17):9091–9095
Liitia T., Maunu S.L., Hortling B., Tamminen T., Pekkala O., Varhimo A. (2003). Cellulose crystallinity and ordering of hemicelluloses in pine and birch pulps as revealed by solid-state NMR spectroscopic methods. Cellulose 10:307–316
Madsen B. and Lilholt H. (2003). Physical and mechanical properties of unidirectional plant fibre composites - an evaluation of the influence of porosity. Compos. Sci. Technol. 63(9):1265–1272
Mwaikambo L.Y. and Ansell M.P. (1999). The effect of chemical treatment on the properties of hemp, sisal, jute and kapok for composite reinforcement. Angewandte Makromolekulare Chemie 272:108–116
Nishiyama Y., Langan P. and Chanzy H. (2002). Crystal structure and hydrogen-bonding system in cellulose Iβ from synchrotron X-ray and neutron fiber diffraction. J. American Chem. Society 124(31):9074–9082
Rietveld H.M. (1967). Line profiles of neutron powder-diffraction peaks for structure refinement. Acta Crystallogr. 22:151–152
Rietveld H.M. (1969). A profile refinement method for nuclear and magnetic structures. J. Appl. Crystallogr. 2:65–71
Ruland W. (1961). X-ray determination of crystallinity and diffuse disorder scattering. Acta Crystallogr. 14:1180–1185
Sao K.P., Samantaray B.K. and Bhattacherjee S. (1994). X-ray study of crystallinity and disorder in ramie fiber. J. Appl. Polym. Sci. 52:1687–1694
Sao K.P., Samantaray B.K. and Bhattacherjee S. (1997). Analysis of lattice distortions in ramie cellulose. J. Appl. Polym. Sci. 66:2045–2046
Sarko A. and Muggli R. (1974). Packing analysis of carbohydrates and polysaccharides. 3. Valonia cellulose and cellulose-II. Macromolecules 7(4):486–494
Segal L., Creely J.J., Martin A.E. and Conrad C.M. (1959). An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Textile Res. J. 29:786–794
Simon I., Glasser L., Scheraga H.A. and Manley R.S. (1988). Structure of cellulose. 2. Low-energy crystalline arrangements. Macromolecules 21(4):990–998
Sugiyama J., Vuong R. and Chanzy H. (1991). Electron diffraction study on the two crystalline phases occuring in native cellulose from an algal cell wall. Macromolecules 24(14):4168–4175
Teeri T.T. and Koivula A. (1995). Cellulose degradation by native and engineered fungal cellulases. Carbohydr. Europe. 12:28–33
Thomsen A.B., Rasmussen S.K., Bohn V., Nielsen K.V. and Thygesen A. 2005. Hemp raw materials: The effect of cultivar, growth conditions and pretreatment on the chemical composition of the fibres. Risø National Laboratory. Report No.: R-1507
Thygesen A., Thomsen A.B., Schmidt A.S., Jørgensen H., Ahring B.K. and Olsson L. (2003). Production of cellulose and hemicellulose-degrading enzymes by filamentous fungi cultivated on wet-oxidised wheat straw. Enzyme Microb. Technol. 32(5):606–615
Thygesen A., Thomsen M.H., Jørgensen H., Christensen B.H. and Thomsen A.B. 2004. Hydrothermal treatment of wheat straw on pilot plant scale, 2nd World Conference and Technology Exhibition on Biomass for Energy, Industry and Climate Protection, Rome, Italy, 10–15th May 2004
Varga E., Reczey K. and Zacchi G. (2004). Optimization of steam pretreatment of corn stover to enhance enzymatic digestibility. Appl. Biochem. Biotechnol., 113–16:509–523
Vonk C.G. (1973). Computerization of Rulands X-ray method for determination of crystallinity in polymers. J. Appl. Crystallogr. 6:148–152
Woodcock C. and Sarko A. (1980). Packing analysis of carbohydrates and polysaccharides. 11. Molecular and crystal-structure of native ramie cellulose. Macromolecules 13(5):1183–1187
Young R.A. (ed.) 1993. The Rietveld Method. Oxford University Press