On the determination of crystallinity and cellulose content in plant fibres

Springer Science and Business Media LLC - Tập 12 - Trang 563-576 - 2005
Anders Thygesen1,2, Jette Oddershede3, Hans Lilholt1, Anne Belinda Thomsen4, Kenny Ståhl3
1Materials Research Department, Risø, National Laboratory, Roskilde, Denmark
2Danish Centre for Forest, Landscape and Planning, The Royal Veterinary and Agricultural University, Tåstrup, Denmark
3Department of Chemistry, Technical University of Denmark, Lyngby, Denmark
4Biosystems Department, Risø National Laboratory, Roskilde, Denmark

Tóm tắt

A comparative study of cellulose crystallinity based on the sample crystallinity and the cellulose content in plant fibres was performed for samples of different origin. Strong acid hydrolysis was found superior to agricultural fibre analysis and comprehensive plant fibre analysis for a consistent determination of the cellulose content. Crystallinity determinations were based on X-ray powder diffraction methods using side-loaded samples in reflection (Bragg-Brentano) mode. Rietveld refinements based on the recently published crystal structure of cellulose Iβ followed by integration of the crystalline and amorphous (background) parts were performed. This was shown to be straightforward to use and in many ways advantageous to traditional crystallinity determinations using the Segal or the Ruland–Vonk methods. The determined cellulose crystallinities were 90–100 g/100 g cellulose in plant-based fibres and 60–70 g/100 g cellulose in wood based fibres. These findings are significant in relation to strong fibre composites and bio-ethanol production.

Tài liệu tham khảo

Alexander L.E. (1969). X-ray diffraction methods in polymer science. Wiley-Interscience, New York Andersson S., Serimaa R., Paakkari T., Saranpää P. and Pesonen E. (2003). Crystallinity of wood and the size of cellulose crystallites in Norway spruce (Picea abies). J. Wood Sci. 49:531–537 Bardage S., Donaldson L., Tokoh C. and Daniel G. 2004. Ultrastructure of the cell wall of unbeaten Norway spruce pulp fibre surfaces. Nordic Pulp Paper Res. J. 19(4):448–452 Browning B.L. (1967). Methods of wood chemistry. Interscience Publishers, A division of John Wiley & Sons, New York Buschle-Diller G. and Zeronian S.H. (1992). Enhancing the reactivity and strength of cotton fibres. J. Appl. Polym. Sci. 45(6):967–979 Debye P. (1915). Zerstreuung von Röntgenstrahlen. Ann. Phys. 46:809–823 De Souza I.J., Bouchard J., Methot M., Berry R. and Argyropoulos D.S. (2002). Carbohydrates in oxygen delignification. Part I: Changes in cellulose crystallinity. J. Pulp Paper Sci. 28(5):167–170 Felby C., Klinke H.B., Olsen H.S. and Thomsen A.B. (2003). Ethanol from wheat straw cellulose by wet oxidation pretreatment and simultaneous saccharification and fermentation. ACS Symposium Series 855:157–174 Fink H.P. and Walenta E. (1994). Röntgenbeugungsuntersuchungen zur übermolekularen Struktur von Cellulose im Verarbeitungsprozeß. Papier 48(12):739–748 Finkenstadt V.L. and Millane R.P. (1998). Crystal structure of Valonia cellulose Iβ. Macromolecules 31(22):7776–7783 Goering H.K. and Van Soest P.J. (1970). Forage fiber analyses (apparatus, reagents, procedures and some applications). Agricultural Research Service, USDA Washington DC Hepworth D.G., Bruce D.M., Vincent J.F.V. and Jeronimidis G. (2000). The manufacture and mechanical testing of thermosetting natural fibre composites. J. Mater. Sci. 35(2):293–298 Howard C.J. and Hill R.J. 1986. LHMP: a computer program for Rietveld analysis of fixed wavelength X-ray and neutron powder diffraction patterns. AAEC (now ANSTO) Report M112. Lucas Heights Research Laboratory Kaar W.E., Cool L.G., Merriman M.M. and Brink D.L. (1991). The complete analysis of wood polysaccharides using HPLC. J. Wood Chem. Technol. 11(4):447–463 Klinke H.B., Lilholt H., Toftegaard H., Andersen T.L., Schmidt A.S. and Thomsen A.B. 2001. Wood and plant fibre reinforced polypropylene composites. In 1st world conference on biomass for energy and industry. James & James (Science Publishers), pp. 1082–1085 Koyama M., Helbert W., Imai T., Sugiyama J. and Henrissat B. (1997). Parallel-up structure evidences the molecular directionality during biosynthesis of bacterial cellulose. Proceedings of the National Academy of Sciences of the United States of America 94(17):9091–9095 Liitia T., Maunu S.L., Hortling B., Tamminen T., Pekkala O., Varhimo A. (2003). Cellulose crystallinity and ordering of hemicelluloses in pine and birch pulps as revealed by solid-state NMR spectroscopic methods. Cellulose 10:307–316 Madsen B. and Lilholt H. (2003). Physical and mechanical properties of unidirectional plant fibre composites - an evaluation of the influence of porosity. Compos. Sci. Technol. 63(9):1265–1272 Mwaikambo L.Y. and Ansell M.P. (1999). The effect of chemical treatment on the properties of hemp, sisal, jute and kapok for composite reinforcement. Angewandte Makromolekulare Chemie 272:108–116 Nishiyama Y., Langan P. and Chanzy H. (2002). Crystal structure and hydrogen-bonding system in cellulose Iβ from synchrotron X-ray and neutron fiber diffraction. J. American Chem. Society 124(31):9074–9082 Rietveld H.M. (1967). Line profiles of neutron powder-diffraction peaks for structure refinement. Acta Crystallogr. 22:151–152 Rietveld H.M. (1969). A profile refinement method for nuclear and magnetic structures. J. Appl. Crystallogr. 2:65–71 Ruland W. (1961). X-ray determination of crystallinity and diffuse disorder scattering. Acta Crystallogr. 14:1180–1185 Sao K.P., Samantaray B.K. and Bhattacherjee S. (1994). X-ray study of crystallinity and disorder in ramie fiber. J. Appl. Polym. Sci. 52:1687–1694 Sao K.P., Samantaray B.K. and Bhattacherjee S. (1997). Analysis of lattice distortions in ramie cellulose. J. Appl. Polym. Sci. 66:2045–2046 Sarko A. and Muggli R. (1974). Packing analysis of carbohydrates and polysaccharides. 3. Valonia cellulose and cellulose-II. Macromolecules 7(4):486–494 Segal L., Creely J.J., Martin A.E. and Conrad C.M. (1959). An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Textile Res. J. 29:786–794 Simon I., Glasser L., Scheraga H.A. and Manley R.S. (1988). Structure of cellulose. 2. Low-energy crystalline arrangements. Macromolecules 21(4):990–998 Sugiyama J., Vuong R. and Chanzy H. (1991). Electron diffraction study on the two crystalline phases occuring in native cellulose from an algal cell wall. Macromolecules 24(14):4168–4175 Teeri T.T. and Koivula A. (1995). Cellulose degradation by native and engineered fungal cellulases. Carbohydr. Europe. 12:28–33 Thomsen A.B., Rasmussen S.K., Bohn V., Nielsen K.V. and Thygesen A. 2005. Hemp raw materials: The effect of cultivar, growth conditions and pretreatment on the chemical composition of the fibres. Risø National Laboratory. Report No.: R-1507 Thygesen A., Thomsen A.B., Schmidt A.S., Jørgensen H., Ahring B.K. and Olsson L. (2003). Production of cellulose and hemicellulose-degrading enzymes by filamentous fungi cultivated on wet-oxidised wheat straw. Enzyme Microb. Technol. 32(5):606–615 Thygesen A., Thomsen M.H., Jørgensen H., Christensen B.H. and Thomsen A.B. 2004. Hydrothermal treatment of wheat straw on pilot plant scale, 2nd World Conference and Technology Exhibition on Biomass for Energy, Industry and Climate Protection, Rome, Italy, 10–15th May 2004 Varga E., Reczey K. and Zacchi G. (2004). Optimization of steam pretreatment of corn stover to enhance enzymatic digestibility. Appl. Biochem. Biotechnol., 113–16:509–523 Vonk C.G. (1973). Computerization of Rulands X-ray method for determination of crystallinity in polymers. J. Appl. Crystallogr. 6:148–152 Woodcock C. and Sarko A. (1980). Packing analysis of carbohydrates and polysaccharides. 11. Molecular and crystal-structure of native ramie cellulose. Macromolecules 13(5):1183–1187 Young R.A. (ed.) 1993. The Rietveld Method. Oxford University Press