Pseudomonasbiofilm matrix composition and niche biology
Tóm tắt
Từ khóa
Tài liệu tham khảo
Abel, 1978, Pituitary stalk-section and some of its effects on endocrine function in the fetal lamb, Q J Exp Physiol Cogn Med Sci, 63, 211
Athanassiou, 2003, Antimicrobial activity of beta-lactam antibiotics against clinical pathogens after molecular inclusion in several cyclodextrins. A novel approach to bacterial resistance, J Pharm Pharmacol, 55, 291, 10.1211/002235702649
Bergstrom, 1946, Pyolipic acid. A metabolic product of Pseudomonas pyocyanea active against Mycobacterium tuberculosis, Arch Biochem Biophys, 10, 165
Bergstrom, 1946, On a metabolic product of Ps. pyocyanea pyolipic acid, active against M. tuberculosis, Arkiv Chem Mineral Geol, 23A, 1
Beveridge, 1999, Structures of gram-negative cell walls and their derived membrane vesicles, J Bacteriol, 181, 4725, 10.1128/JB.181.16.4725-4733.1999
Blackwood, 1981, Influence of mucoid coating on clearance of Pseudomonas aeruginosa from lungs, Infect Immun, 32, 443, 10.1128/IAI.32.2.443-448.1981
Boucher, 1997, Mucoid Pseudomonas aeruginosa in cystic fibrosis: characterization of muc mutations in clinical isolates and analysis of clearance in a mouse model of respiratory infection, Infect Immun, 65, 3838, 10.1128/IAI.65.9.3838-3846.1997
Byrd, 2010, The Pseudomonas aeruginosa exopolysaccharide Psl facilitates surface adherence and NF-kappaB activation in A549 cells, MBio, 1, e00140, 10.1128/mBio.00140-10
Cadieux, 1983, Spontaneous release of lipopolysaccharide by Pseudomonas aeruginosa, J Bacteriol, 155, 817, 10.1128/JB.155.2.817-825.1983
Colvin KM Irie Y Tart CS Urbano R Whitney JC Ryder C Howell PL Wozniak DJ & Parsek MR (2011b) The Pel and Psl polysaccharides provide Pseudomonas aeruginosa structural redundancy within the biofilm matrix. Environ Microbiol. DOI: 10.1111/j.1462-2920.2011.02657.x.
Costerton, 1994, Biofilms, the customized microniche, J Bacteriol, 176, 2137, 10.1128/jb.176.8.2137-2142.1994
Deretic, 1989, The algR gene, which regulates mucoidy in Pseudomonas aeruginosa, belongs to a class of environmentally responsive genes, J Bacteriol, 171, 1278, 10.1128/jb.171.3.1278-1283.1989
Deretic, 1993, Conversion to mucoidy in Pseudomonas aeruginosa, Biotechnology, 11, 1133, 10.1038/nbt1093-1133
DeVries, 1994, Mucoid-to-nonmucoid conversion in alginate-producing Pseudomonas aeruginosa often results from spontaneous mutations in algT, encoding a putative alternate sigma factor, and shows evidence for autoregulation, J Bacteriol, 176, 6677, 10.1128/jb.176.21.6677-6687.1994
Evans, 1973, Production and characterization of the slime polysaccharide of Pseudomonas aeruginosa, J Bacteriol, 116, 915, 10.1128/JB.116.2.915-924.1973
Evrard, 2004, Cyclodextrins as a potential carrier in drug nebulization, J Control Release, 96, 403, 10.1016/j.jconrel.2004.02.010
Fakhr, 1999, Regulation of alginate biosynthesis in Pseudomonas syringae pv. syringae, J Bacteriol, 181, 3478, 10.1128/JB.181.11.3478-3485.1999
Govan, 1996, Microbial pathogenesis in cystic fibrosis: mucoid Pseudomonas aeruginosa and Burkholderia cepacia, Microbiol Rev, 60, 539, 10.1128/MMBR.60.3.539-574.1996
Grenier, 1987, Functional characterization of extracellular vesicles produced by Bacteroides gingivalis, Infect Immun, 55, 111, 10.1128/IAI.55.1.111-117.1987
Hauser, 1954, Studies on the production of glycolipide by Pseudomonas aeruginosa, J Bacteriol, 68, 645, 10.1128/JB.68.6.645-654.1954
Haussler, 1998, Purification and characterization of a cytotoxic exolipid of Burkholderia pseudomallei, Infect Immun, 66, 1588, 10.1128/IAI.66.4.1588-1593.1998
Hommel RK (1994) Form and function of biosurfactants for degradation of water-insoluble substrates. Biochemistry of Microbial Degradation ( Ratledge I , ed), pp. 63–87. Kluwer Academic Publishers, London.
Hoyle, 1993, Production of mucoid exopolysaccharide during development of Pseudomonas aeruginosa biofilms, Infect Immun, 61, 777, 10.1128/IAI.61.2.777-780.1993
Kadurugamuwa, 1995, Virulence factors are released from Pseudomonas aeruginosa in association with membrane vesicles during normal growth and exposure to gentamicin: a novel mechanism of enzyme secretion, J Bacteriol, 177, 3998, 10.1128/jb.177.14.3998-4008.1995
Kang, 1998, Purification and characterization of a novel levanoctaose-producing levanase from Pseudomonas strain K-52, Biotechnol Appl Biochem, 27, 159
Keith, 1999, AlgT (σ22) controls alginate production and tolerance to environmental stress in Pseudomonas syringae, J Bacteriol, 181, 7176, 10.1128/JB.181.23.7176-7184.1999
Khan, 2010, Aminoglycoside resistance of Pseudomonas aeruginosa biofilms modulated by extracellular polysaccharide, Int Microbiol, 13, 207
Kidambi, 1995, Copper as a signal for alginate synthesis in Pseudomonas syringae pv. syringae, Appl Environ Microbiol, 61, 2172, 10.1128/AEM.61.6.2172-2179.1995
Kolling, 1999, Export of virulence genes and Shiga toxin by membrane vesicles of Escherichia coli O157:H7, Appl Environ Microbiol, 65, 1843, 10.1128/AEM.65.5.1843-1848.1999
Kownatzki, 1987, Rhamnolipid of Pseudomonas aeruginosa in sputum of cystic fibrosis patients, Lancet, 1, 1026, 10.1016/S0140-6736(87)92286-0
Lam, 1980, Production of mucoid microcolonies by Pseudomonas aeruginosa within infected lungs in cystic fibrosis, Infect Immun, 28, 546, 10.1128/iai.28.2.546-556.1980
Li, 2010, Transient alginate gene expression by Pseudomonas putida biofilm residents under water-limiting conditions reflects adaptation to the local environment, Environ Microbiol, 12, 1578, 10.1111/j.1462-2920.2010.02186.x
Licking, 1999, Getting a grip on bacterial slime, Bus Week, 13, 98
Mathee, 1997, Posttranslational control of the algT (algU)-encoded σ22 for expression of the alginate regulon in Pseudomonas aeruginosa and localization of its antagonist proteins MucA and MucB (AlgN), J Bacteriol, 179, 3711, 10.1128/jb.179.11.3711-3720.1997
McClure, 1992, Effects of Pseudomonas aeruginosa rhamnolipids on human monocyte-derived macrophages, J Leukoc Biol, 51, 97, 10.1002/jlb.51.2.97
Menozzi, 1994, Surface-associated filamentous hemagglutinin induces autoagglutination of Bordetella pertussis, Infect Immun, 62, 4261, 10.1128/IAI.62.10.4261-4269.1994
Nakamura, 2008, The roles of the quorum-sensing system in the release of extracellular DNA, lipopolysaccharide, and membrane vesicles from Pseudomonas aeruginosa, Jpn J Infect Dis, 61, 375, 10.7883/yoken.JJID.2008.375
Neu, 1996, Significance of bacterial surface-active compounds in interaction of bacteria with interfaces, Microbiol Rev, 60, 151, 10.1128/MMBR.60.1.151-166.1996
Ohman, 1982, Utilization of human respiratory secretions by mucoid Pseudomonas aeruginosa of cystic fibrosis origin, Infect Immun, 37, 662, 10.1128/IAI.37.2.662-669.1982
Onbasli, 2009, Effects of some organic pollutants on the exopolysaccharides (EPSs) produced by some Pseudomonas spp. strains, J Hazard Mater, 168, 64, 10.1016/j.jhazmat.2009.01.131
Onbasli, 2009, Biosurfactant production in sugar beet molasses by some Pseudomonas spp, J Environ Biol, 30, 161
Osman, 1986, Exopolysaccharides of the phytopathogen Pseudomonas syringae pv. glycinea, J Bacteriol, 166, 66, 10.1128/jb.166.1.66-71.1986
Pagès, 2007, Exploration of intraclonal adaptation mechanisms of Pseudomonas brassicacearum facing cadmium toxicity, Environ Microbiol, 9, 2820, 10.1111/j.1462-2920.2007.01394.x
Penaloza-Vazquez, 1997, Characterization of the alginate biosynthetic gene cluster in Pseudomonas syringae pv. syringae, J Bacteriol, 179, 4464, 10.1128/jb.179.14.4464-4472.1997
Pier, 1998, Pseudomonas aeruginosa: a key problem in cystic fibrosis, ASM News, 6, 339
Preston, 2001, Analysis and expression of algL, which encodes alginate lyase in Pseudomonas syringae pv. syringae, DNA Seq, 12, 455, 10.3109/10425170109084474
Read, 1992, Effect of Pseudomonas aeruginosa rhamnolipids on mucociliary transport and ciliary beating, J Appl Phys, 72, 2271
Rocchetta, 1999, Genetics of O-antigen biosynthesis in Pseudomonas aeruginosa, Microbiol Mol Biol Rev, 63, 523, 10.1128/MMBR.63.3.523-553.1999
Sá-Correia, 1987, Alginate biosynthetic enzymes in mucoid and nonmucoid Pseudomonas aeruginosa: overproduction of phosphomannose isomerase, phosphomannomutase, and GDP-mannose pyrophosphorylase by overexpression of the phosphomannose isomerase (pmi) gene, J Bacteriol, 169, 3224, 10.1128/jb.169.7.3224-3231.1987
Schwarzmann, 1971, Antiphagocytic effect of slime from a mucoid strain of Pseudomonas aeruginosa, Infect Immun, 3, 762, 10.1128/IAI.3.6.762-767.1971
Simpson, 1993, Alginate may accumulate in cystic-fibrosis lung because the enzymatic and free-radical capacities of phagocytic-cells are inadequate for its degradation, Biochem Mol Biol Int, 30, 1021
Spiers, 2002, Adaptive divergence in experimental populations of Pseudomonas fluorescens. I. Genetic and phenotypic bases of wrinkly spreader fitness, Genetics, 161, 33, 10.1093/genetics/161.1.33
Sutherland, 2001, Biofilm exopolysaccharides: a strong and sticky framework, Microbiology, 147, 3, 10.1099/00221287-147-1-3
Tanious, 1997, A new type of DNA minor-groove complex: carbazole dication–DNA interactions, Biochemistry, 36, 15315, 10.1021/bi971599r
Visnapuu, 2009, Fully automated chip-based negative mode nanoelectrospray mass spectrometry of fructooligosaccharides produced by heterologously expressed levansucrase from Pseudomonas syringae pv. tomato DC3000, Rapid Commun Mass Spectrom, 23, 1337, 10.1002/rcm.4007
Welsh, 2009, Development of a porcine model of cystic fibrosis, Trans Am Clin Climatol Assoc, 120, 149
Zhang, 1994, Effect of a Pseudomonas rhamnolipid biosurfactant on cell hydrophobicity and biodegradation of octadecane, Appl Environ Microbiol, 60, 2101, 10.1128/AEM.60.6.2101-2106.1994
Zielinski, 1991, Characterization and regulation of the Pseudomonas aeruginosa algC gene encoding phosphomannomutase, J Biol Chem, 266, 9754, 10.1016/S0021-9258(18)92885-1
Zielinski, 1992, Alginate synthesis in Pseudomonas aeruginosa: environmental regulation of the algC promoter, J Bacteriol, 174, 7680, 10.1128/jb.174.23.7680-7688.1992
Zielinski NA DeVault JD & Roychoudhury S et al. (1990) Molecular genetics of alginate biosynthesis in Pseudomonas aeruginosa . Pseudomonas Biotransformations, Pathogenesis and Evolving Biotechnology ( Silver S Chakrabarty AM Iglewski B & Kaplan S , eds), pp. 15–27. American Society for Microbiology, Washington, DC.