Do green spaces affect the spatiotemporal changes of PM2.5 in Nanjing?
Tóm tắt
Among the most dangerous pollutants is PM2.5, which can directly pass through human lungs and move into the blood system. The use of nature-based solutions, such as increased vegetation cover in an urban landscape, is one of the possible solutions for reducing PM2.5 concentration. Our study objective was to understand the importance of green spaces in pollution reduction. Daily PM2.5 concentrations were manually collected at nine monitoring stations in Nanjing over a 534-day period from the air quality report of the China National Environmental Monitoring Center (CNEMC) to quantify the spatiotemporal change of PM2.5 concentration and its empirical relationship with vegetation and landscape structure in Nanjing. The daily average, minimum, and maximum PM2.5 concentrations from the nine stations were 74.0, 14.2, and 332.0 μg m−3, respectively. Out of the 534 days, the days recorded as “excellent” and “good” conditions were found mostly in the spring (30.7 %), autumn (25.6 %), and summer (24.5 %), with only 19.2 % of the days in the winter. High PM2.5 concentrations exceeding the safe standards of the CNEMC were recorded predominately during the winter (39.3–100.0 %). Our hypothesis that green vegetation had the potential to reduce PM2.5 concentration was accepted at specific seasons and scales. The PM2.5 concentration appeared very highly correlated (R
2 > 0.85) with green cover in spring at 1–2 km scales, highly correlated (R
2 > 0.6) in autumn and winter at 4 km scale, and moderately correlated in summer (R
2 > 0.4) at 2-, 5-, and 6-km scales. However, a non-significant correlation between green cover and PM2.5 concentration was found when its level was >75 μg m−3. Across the Nanjing urban landscape, the east and southwest parts had high pollution levels. Although the empirical models seemed significant for spring only, one should not devalue the importance of green vegetation in other seasons because the regulations are often complicated by vegetation, meteorological conditions, and human activities.
Tài liệu tham khảo
Apte JS, Marshall JD, Cohen AJ, Brauer M (2015) Addressing global mortality from ambient PM2.5. Environ Sci Technol 49:8057–8066
Bartier PM, Keller CP (1996) Multivariate interpolation to incorporate thematic surface data using inverse distance weighting (IDW). Comput Geosci 22:795–799
Chen J, Franklin JF, Spies TA (1992) Vegetation responses to edge environments in old-growth Douglas-fir forests. Ecol Appl 2:387–396
Chen J, Franklin JF, Spies TA (1993) Contrasting microclimates among clearcut, edge, and interior of old-growth Douglas-fir forest. Agr For Meteorol 63:219–237
Chen J, Saunders SC, Crow TR, Naiman RJ, Brosofske KD, Mroz GD, Brookshire BL, Franklin JF (1999) Microclimate in forest ecosystem and landscape ecology. Bioscience 49:288–297
Chen J, Ban Y, Li S (2014) China: Open access to Earth land-cover map. Nature 514:434
Chen J, Yu X, Sun F, Lun X, Fu Y, Jia G, Zhang Z, Liu X, Mo L, Bi H (2015) The concentrations and reduction of airborne particulate matter (PM10, PM2.5, PM1) at shelterbelt site in Beijing. Atmosphere 6:650–676
Chiesura A (2004) The role of urban parks for the sustainable city. Landscape Urban Plan 68:129–138
Fan P, Chen J, John R (2016) Urbanization and environmental change during the economic transition on the Mongolian Plateau: Hohhot and Ulaanbaatar. Environ Res 144:96–112
Giugliano M, Lonati G, Butelli P, Romele L, Tardivo R, Grosso M (2005) Fine particulate (PM2.5–PM1) at urban sites with different traffic exposure. Atmos Environ 39:2421–2431
Han L, Zhou W, Li W (2015) Increasing impact of urban fine particles (PM2.5) on areas surrounding Chinese cities. Sci Rep 5:12467
Hänninen OO, Palonen J, Tuomisto JT, Yli-Tuomi T, Seppänen O, Jantunen MJ (2005) Reduction potential of urban PM2.5 mortality risk using modern ventilation systems in buildings. Indoor Air 5:246–256
Hao L, Xiao Z, Yang Q (2015) Study on planning and construction of community greenway for PM2.5 reduction. Open Fuels Energy Sci J 8:99–105
He ZJ (2010) Pollution levels of air borne particulate matter PM10 and PM2.5 in summer in Nanchang city. Anhui Agri Sci 38:1336–1338
Huang LM, Wang GH, Wang H, Gao SX, Wang LS (2002) Pollution level of the airborne participate matter (PM10, PM 2.5) in Nanjing City. China Environ Sci 22:334–337
Huang YM, Shu J, Wei HP, Wang Q (2006) The estimate and GIS of fugitive dust emission from paved roads in industrial estate. Environ Sci Manage 4:673–1212
Hueglin C, Gehrig R, Baltensperger U, Gysel M, Monn C, Vonmont H (2005) Chemical characterisation of PM2.5, PM10 and coarse particles at urban, near-city and rural sites in Switzerland. Atmos Environ 39:637–651
Hwang HJ, Yook SJ, Ahn KH (2011) Experimental investigation of submicron and ultrafine soot particle removal by tree leaves. Atmos Environ 45:6987–6994
Janhäll S (2015) Review on urban vegetation and particle air pollution—deposition and dispersion. Atmos Environ 105:130–137
John R, Chen J, Ou-Yang ZT, Xiao J, Becker R, Samanta A, Ganguly S, Yuan W, Batkhishig O (2013) Vegetation response to extreme climate events on the Mongolian Plateau from 2000 to 2010. Environ Res Lett 8. doi:10.1088/1748-9326/8/3/035033
Lafortezza R, Carrus G, Sanesi G, Davies C (2009) Benefits and well-being perceived by people visiting green spaces in periods of heat stress. Urban For Urban Greening 8:97–108
Liu LZ (1985) Synoptic and climatic characteristics of the surface inversion in Nanjing region. Sci Meteorol Sinica 2:69–76
Liu X, Zhu J, Van Espen P, Adams F, Xiao R, Dong S, Li Y (2005) Single particle characterization of spring and summer aerosols in Beijing: formation of composite sulfate of calcium and potassium. Atmos Environ 39:6909–6918
Masetti M, Nghiem SV, Sorichetta A, Stevenazzi S, Fabbri P, Pola M, Filippini M, Brakenridge GR (2015) Urbanization affects air and water in Italy’s Po Plain. Eos 96. doi:10.1029/2015EO037575
McGarigal K, Marks BJ (1994) Spatial pattern analysis program for quantifying landscape structure., USDA Gen Tech Rep PNW-GTR-351
Mugica V, Ortiz E, Molina L, De Vizcaya-Ruiz A, Nebot A, Quintana R, Aguilar J, Alcántara E (2009) PM composition and source reconciliation in Mexico City. Atmos Environ 43:5068–5074
Nowak DJ, Hirabayashi S, Bodine A, Hoehn R (2013) Modeled PM2.5 removal by trees in ten US cities and associated health effects. Environ Pollut 178:395–402
Park SS, Kim YJ (2005) Source contributions to fine particulate matter in an urban atmosphere. Chemosphere 59:217–226
Perrone MG, Larsen BR, Ferrero L, Sangiorgi G, De Gennaro G, Udisti R, Zangrando R, Gambaro A, Bolzacchini E (2012) Sources of high PM2.5 concentrations in Milan, Northern Italy: molecular marker data and CMB modelling. Sci Total Environ 414:343–355
Querol X, Alastuey A, Ruiz CR, Artiñano B, Hansson HC, Harrison RM, Buringh ET, Ten Brink HM, Lutz M, Bruckmann P, Straehl P (2004) Speciation and origin of PM10 and PM2.5 in selected European cities. Atmos Environ 38:6547–6555
Rodrıguez S, Querol X, Alastuey A, Viana MM, Alarcon M, Mantilla E, Ruiz CR (2004) Comparative p M10–PM2.5 source contribution study at rural, urban and industrial sites during PM episodes in Eastern Spain. Sci Total Environ 28:95–113
Rohde RA, Muller RA (2015) Air pollution in China: mapping of concentrations and sources. PLoS One 10(8), e0135749. doi:10.1371/journal.pone.0135749
Sanesi G, Padoa-Schioppa E, Lorusso L, Bottoni L, Lafortezza R (2009) Avian ecological diversity as an indicator of urban forest functionality. Results from two case studies in Northern and southern Italy. J Arboriculture Urban For 35:53–59
Schmid HP (1994) Source areas for scalars and scalar fluxes. Bound-Lay Meteorol 67:293–318
Tian L, Chen J, Yu SX (2014) Coupled dynamics of urban landscape pattern and socioeconomic drivers in Shenzhen, China. Landscape Ecol 29:715–727
Tong MK, Gao JX, Tian MR, Ji P (2015) Subduction of PM2.5 by road green space in Beijing and its health benefit evaluation. Atmosphere 6:650–676
Tzoulas K, Korpela K, Venn S, Yli-Pelkonen V, Kaźmierczak A, Niemela J, James P (2007) Promoting ecosystem and human health in urban areas using Green Infrastructure: a literature review. Landscape Urban Plan 81:167–178
Vecchi R, Marcazzan G, Valli G, Ceriani M, Antoniazzi C (2004) The role of atmospheric dispersion in the seasonal variation of PM1 and PM2.5 concentration and composition in the urban area of Milan (Italy). Atmos Environ 38:4437–4446
Vecchi R, Marcazzan G, Valli G (2007) A study on nighttime–daytime PM10 concentration and elemental composition in relation to atmospheric dispersion in the urban area of Milan (Italy). Atmos Environ 41:2136–2144
Viana M, Kuhlbusch TA, Querol X, Alastuey A, Harrison RM, Hopke PK, Winiwarter W, Vallius M, Szidat S, Prévôt AS, Hueglin C (2008) Source apportionment of particulate matter in Europe: a review of methods and results. J Aersol Sci 39:827–849
Walton H, Dajnak D, Beevers S, Williams M (2015) Understanding the health impacts of air pollution in London. King’s College London, UK, p 129
Wolch JR, Byrne J, Newell JP (2014) Urban green space, public health, and environmental justice: the challenge of making cities ‘just green enough’. Landscape Urban Plan 125:234–244
Wu ZP, Wang C, Hou XJ, Yang WW (2008) Variation of air PM2.5 concentration in six urban greenlands. J Anhui Agri Univ 35:494–498
Wu J, Xie W, Li W, Li J (2015) Effects of urban landscape pattern on PM2.5 pollution—a Beijing case study. PLoS One 10(11), e0142449
Xu H, Deng B, Zhou X, Wang Q (2002) Effect of fog on urban boundary layer and environment. J Appl Meteorol Sci 13:170–176
Zhang YL, Cao F (2015) Fine particulate matter (PM2.5) in China at a city level. Sci Rep 5:14884
Zupancic A, Westmacott C, Bulthuis M (2015) The impact of green space on heat and air pollution in urban communities: a meta-narrative systematic review. David Suzuki Foundation, Vancouver, BC, Canada, p 67