Do green spaces affect the spatiotemporal changes of PM2.5 in Nanjing?

Ecological Processes - Tập 5 - Trang 1-13 - 2016
Jiquan Chen1,2,3, Liuyan Zhu1, Peilei Fan4,2, Li Tian5, Raffaele Lafortezza6,2
1International Center for Ecology, Meteorology, and Environment, Nanjing University of Information Science and Technology, Nanjing, China
2CGCEO/Geography, Michigan State University, East Lansing, USA
3Department of Geography, Michigan State University, East Lansing, USA
4School of Planning, Design and Construction, Michigan State University, East Lansing, USA
5Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
6Department of Scienze Agro-Ambientali e Territoriali, University of Bari, Bari, Italy

Tóm tắt

Among the most dangerous pollutants is PM2.5, which can directly pass through human lungs and move into the blood system. The use of nature-based solutions, such as increased vegetation cover in an urban landscape, is one of the possible solutions for reducing PM2.5 concentration. Our study objective was to understand the importance of green spaces in pollution reduction. Daily PM2.5 concentrations were manually collected at nine monitoring stations in Nanjing over a 534-day period from the air quality report of the China National Environmental Monitoring Center (CNEMC) to quantify the spatiotemporal change of PM2.5 concentration and its empirical relationship with vegetation and landscape structure in Nanjing. The daily average, minimum, and maximum PM2.5 concentrations from the nine stations were 74.0, 14.2, and 332.0 μg m−3, respectively. Out of the 534 days, the days recorded as “excellent” and “good” conditions were found mostly in the spring (30.7 %), autumn (25.6 %), and summer (24.5 %), with only 19.2 % of the days in the winter. High PM2.5 concentrations exceeding the safe standards of the CNEMC were recorded predominately during the winter (39.3–100.0 %). Our hypothesis that green vegetation had the potential to reduce PM2.5 concentration was accepted at specific seasons and scales. The PM2.5 concentration appeared very highly correlated (R 2 > 0.85) with green cover in spring at 1–2 km scales, highly correlated (R 2 > 0.6) in autumn and winter at 4 km scale, and moderately correlated in summer (R 2 > 0.4) at 2-, 5-, and 6-km scales. However, a non-significant correlation between green cover and PM2.5 concentration was found when its level was >75 μg m−3. Across the Nanjing urban landscape, the east and southwest parts had high pollution levels. Although the empirical models seemed significant for spring only, one should not devalue the importance of green vegetation in other seasons because the regulations are often complicated by vegetation, meteorological conditions, and human activities.

Tài liệu tham khảo

Apte JS, Marshall JD, Cohen AJ, Brauer M (2015) Addressing global mortality from ambient PM2.5. Environ Sci Technol 49:8057–8066 Bartier PM, Keller CP (1996) Multivariate interpolation to incorporate thematic surface data using inverse distance weighting (IDW). Comput Geosci 22:795–799 Chen J, Franklin JF, Spies TA (1992) Vegetation responses to edge environments in old-growth Douglas-fir forests. Ecol Appl 2:387–396 Chen J, Franklin JF, Spies TA (1993) Contrasting microclimates among clearcut, edge, and interior of old-growth Douglas-fir forest. Agr For Meteorol 63:219–237 Chen J, Saunders SC, Crow TR, Naiman RJ, Brosofske KD, Mroz GD, Brookshire BL, Franklin JF (1999) Microclimate in forest ecosystem and landscape ecology. Bioscience 49:288–297 Chen J, Ban Y, Li S (2014) China: Open access to Earth land-cover map. Nature 514:434 Chen J, Yu X, Sun F, Lun X, Fu Y, Jia G, Zhang Z, Liu X, Mo L, Bi H (2015) The concentrations and reduction of airborne particulate matter (PM10, PM2.5, PM1) at shelterbelt site in Beijing. Atmosphere 6:650–676 Chiesura A (2004) The role of urban parks for the sustainable city. Landscape Urban Plan 68:129–138 Fan P, Chen J, John R (2016) Urbanization and environmental change during the economic transition on the Mongolian Plateau: Hohhot and Ulaanbaatar. Environ Res 144:96–112 Giugliano M, Lonati G, Butelli P, Romele L, Tardivo R, Grosso M (2005) Fine particulate (PM2.5–PM1) at urban sites with different traffic exposure. Atmos Environ 39:2421–2431 Han L, Zhou W, Li W (2015) Increasing impact of urban fine particles (PM2.5) on areas surrounding Chinese cities. Sci Rep 5:12467 Hänninen OO, Palonen J, Tuomisto JT, Yli-Tuomi T, Seppänen O, Jantunen MJ (2005) Reduction potential of urban PM2.5 mortality risk using modern ventilation systems in buildings. Indoor Air 5:246–256 Hao L, Xiao Z, Yang Q (2015) Study on planning and construction of community greenway for PM2.5 reduction. Open Fuels Energy Sci J 8:99–105 He ZJ (2010) Pollution levels of air borne particulate matter PM10 and PM2.5 in summer in Nanchang city. Anhui Agri Sci 38:1336–1338 Huang LM, Wang GH, Wang H, Gao SX, Wang LS (2002) Pollution level of the airborne participate matter (PM10, PM 2.5) in Nanjing City. China Environ Sci 22:334–337 Huang YM, Shu J, Wei HP, Wang Q (2006) The estimate and GIS of fugitive dust emission from paved roads in industrial estate. Environ Sci Manage 4:673–1212 Hueglin C, Gehrig R, Baltensperger U, Gysel M, Monn C, Vonmont H (2005) Chemical characterisation of PM2.5, PM10 and coarse particles at urban, near-city and rural sites in Switzerland. Atmos Environ 39:637–651 Hwang HJ, Yook SJ, Ahn KH (2011) Experimental investigation of submicron and ultrafine soot particle removal by tree leaves. Atmos Environ 45:6987–6994 Janhäll S (2015) Review on urban vegetation and particle air pollution—deposition and dispersion. Atmos Environ 105:130–137 John R, Chen J, Ou-Yang ZT, Xiao J, Becker R, Samanta A, Ganguly S, Yuan W, Batkhishig O (2013) Vegetation response to extreme climate events on the Mongolian Plateau from 2000 to 2010. Environ Res Lett 8. doi:10.1088/1748-9326/8/3/035033 Lafortezza R, Carrus G, Sanesi G, Davies C (2009) Benefits and well-being perceived by people visiting green spaces in periods of heat stress. Urban For Urban Greening 8:97–108 Liu LZ (1985) Synoptic and climatic characteristics of the surface inversion in Nanjing region. Sci Meteorol Sinica 2:69–76 Liu X, Zhu J, Van Espen P, Adams F, Xiao R, Dong S, Li Y (2005) Single particle characterization of spring and summer aerosols in Beijing: formation of composite sulfate of calcium and potassium. Atmos Environ 39:6909–6918 Masetti M, Nghiem SV, Sorichetta A, Stevenazzi S, Fabbri P, Pola M, Filippini M, Brakenridge GR (2015) Urbanization affects air and water in Italy’s Po Plain. Eos 96. doi:10.1029/2015EO037575 McGarigal K, Marks BJ (1994) Spatial pattern analysis program for quantifying landscape structure., USDA Gen Tech Rep PNW-GTR-351 Mugica V, Ortiz E, Molina L, De Vizcaya-Ruiz A, Nebot A, Quintana R, Aguilar J, Alcántara E (2009) PM composition and source reconciliation in Mexico City. Atmos Environ 43:5068–5074 Nowak DJ, Hirabayashi S, Bodine A, Hoehn R (2013) Modeled PM2.5 removal by trees in ten US cities and associated health effects. Environ Pollut 178:395–402 Park SS, Kim YJ (2005) Source contributions to fine particulate matter in an urban atmosphere. Chemosphere 59:217–226 Perrone MG, Larsen BR, Ferrero L, Sangiorgi G, De Gennaro G, Udisti R, Zangrando R, Gambaro A, Bolzacchini E (2012) Sources of high PM2.5 concentrations in Milan, Northern Italy: molecular marker data and CMB modelling. Sci Total Environ 414:343–355 Querol X, Alastuey A, Ruiz CR, Artiñano B, Hansson HC, Harrison RM, Buringh ET, Ten Brink HM, Lutz M, Bruckmann P, Straehl P (2004) Speciation and origin of PM10 and PM2.5 in selected European cities. Atmos Environ 38:6547–6555 Rodrıguez S, Querol X, Alastuey A, Viana MM, Alarcon M, Mantilla E, Ruiz CR (2004) Comparative p M10–PM2.5 source contribution study at rural, urban and industrial sites during PM episodes in Eastern Spain. Sci Total Environ 28:95–113 Rohde RA, Muller RA (2015) Air pollution in China: mapping of concentrations and sources. PLoS One 10(8), e0135749. doi:10.1371/journal.pone.0135749 Sanesi G, Padoa-Schioppa E, Lorusso L, Bottoni L, Lafortezza R (2009) Avian ecological diversity as an indicator of urban forest functionality. Results from two case studies in Northern and southern Italy. J Arboriculture Urban For 35:53–59 Schmid HP (1994) Source areas for scalars and scalar fluxes. Bound-Lay Meteorol 67:293–318 Tian L, Chen J, Yu SX (2014) Coupled dynamics of urban landscape pattern and socioeconomic drivers in Shenzhen, China. Landscape Ecol 29:715–727 Tong MK, Gao JX, Tian MR, Ji P (2015) Subduction of PM2.5 by road green space in Beijing and its health benefit evaluation. Atmosphere 6:650–676 Tzoulas K, Korpela K, Venn S, Yli-Pelkonen V, Kaźmierczak A, Niemela J, James P (2007) Promoting ecosystem and human health in urban areas using Green Infrastructure: a literature review. Landscape Urban Plan 81:167–178 Vecchi R, Marcazzan G, Valli G, Ceriani M, Antoniazzi C (2004) The role of atmospheric dispersion in the seasonal variation of PM1 and PM2.5 concentration and composition in the urban area of Milan (Italy). Atmos Environ 38:4437–4446 Vecchi R, Marcazzan G, Valli G (2007) A study on nighttime–daytime PM10 concentration and elemental composition in relation to atmospheric dispersion in the urban area of Milan (Italy). Atmos Environ 41:2136–2144 Viana M, Kuhlbusch TA, Querol X, Alastuey A, Harrison RM, Hopke PK, Winiwarter W, Vallius M, Szidat S, Prévôt AS, Hueglin C (2008) Source apportionment of particulate matter in Europe: a review of methods and results. J Aersol Sci 39:827–849 Walton H, Dajnak D, Beevers S, Williams M (2015) Understanding the health impacts of air pollution in London. King’s College London, UK, p 129 Wolch JR, Byrne J, Newell JP (2014) Urban green space, public health, and environmental justice: the challenge of making cities ‘just green enough’. Landscape Urban Plan 125:234–244 Wu ZP, Wang C, Hou XJ, Yang WW (2008) Variation of air PM2.5 concentration in six urban greenlands. J Anhui Agri Univ 35:494–498 Wu J, Xie W, Li W, Li J (2015) Effects of urban landscape pattern on PM2.5 pollution—a Beijing case study. PLoS One 10(11), e0142449 Xu H, Deng B, Zhou X, Wang Q (2002) Effect of fog on urban boundary layer and environment. J Appl Meteorol Sci 13:170–176 Zhang YL, Cao F (2015) Fine particulate matter (PM2.5) in China at a city level. Sci Rep 5:14884 Zupancic A, Westmacott C, Bulthuis M (2015) The impact of green space on heat and air pollution in urban communities: a meta-narrative systematic review. David Suzuki Foundation, Vancouver, BC, Canada, p 67