Mineral Favorability Mapping: A Comparison of Artificial Neural Networks, Logistic Regression, and Discriminant Analysis

Springer Science and Business Media LLC - Tập 8 Số 2 - Trang 93-109 - 1999
Harris, DeVerle1, Pan, Guocheng2
1Geoscience Department, University of Arizona, Tucson
2Highland Ranch

Tóm tắt

A Probabilistic Neural Network (PNN) was trained to classify mineralized and nonmineralized cells using eight geological, geochemical, and geophysical variables. When applied to a second (validation) set of well-explored cells that had been excluded from the training set, the trained PNN generalized well, giving true positive percentages of 86.7 and 93.8 for the mineralized and nonmineralized cells, respectively. All artifical neural networks and statistical models were analyzed and compared by the percentages of mineralized cells and barren cells that would be retained and rejected correctly respectively, for specified cutoff probabilities for mineralization. For example, a cutoff probability for mineralization of 0.5 applied to the PNN probabilities would have retained correctly 87.66% of the mineralized cells and correctly rejected 93.25% of the barren cells of the validation set. Nonparametric discriminant analysis, based upon the Epanechnikov Kernel performed better than logistic regression or parametric discriminant analysis. Moreover, it generalized well to the validation set of well-explored cells, particularly to those cells that were mineralized. However, PNN performed better overall than nonparametric discriminant analysis in that it achieved higher percentages of correct retention and correct rejection of mineralized and barren cells, respectively. Although the generalized regression neural network (GRNN) is not designed for a binary—presence or absence of mineralization— dependent variable, it also performed well in mapping favorability by an index valued on the interval [0, 1]. However, PNN outperformed GRNN in correctly retaining mineralized cells and rejecting barren cells of the validation set.

Tài liệu tham khảo

citation_journal_title=Computers & Geosciences; citation_title=LOGDIA-FORTRAN 77 program for logistic regression with diagnostics; citation_author=F. P. Agterberg; citation_volume=15; citation_issue=4; citation_publication_date=1989; citation_pages=599-614; citation_id=CR1 citation_journal_title=Nonrenewable Resources; citation_title=Combining indicator patterns in weights of evidence modeling for resource evaluation; citation_author=F. P. Agterberg; citation_volume=1; citation_issue=1; citation_publication_date=1992; citation_pages=39-50; citation_id=CR2 citation_title=Deriving weights of evidence from geoscience contour maps for the prediction of discrete events; citation_inbook_title=Proc. 22nd APCOM Symp. (Berlin); citation_publication_date=1990; citation_pages=381-396; citation_id=CR3; citation_author=F. P. Agterberg; citation_author=G. Bonham-Carter; citation_publisher=Technical Univ. citation_journal_title=Computers & Geosciences; citation_title=Integration of mineral resource data for Kasmere Lake area, northwest Manitoba, with emphasis on uranium; citation_author=G. F. Bonham-Carter, C. F. Chung; citation_volume=15; citation_issue=1; citation_publication_date=1983; citation_pages=25-45; citation_id=CR4 citation_journal_title=Ann. Inst. Statistical Mathematics (Tokyo); citation_title=Estimation of a multivariate density; citation_author=T. Cacoullos; citation_volume=18; citation_issue=2; citation_publication_date=1966; citation_pages=179-189; citation_id=CR5 citation_journal_title=Math. Geology; citation_title=Regression models for estimating mineral resources from geological map data; citation_author=C. F. Chung, F. P. Agterberg; citation_volume=12; citation_issue=5; citation_publication_date=1980; citation_pages=473-488; citation_id=CR6 Cox, D. P., and Singer, D. A., 1986, Mineral deposit models: U.S. Geol. Survey Bull. 1693, 379 p. citation_journal_title=Producers Monthly; citation_title=Differentiation of oil-bearing from barren sediments by quantitative petrographic analysis; citation_author=J. C. Griffiths; citation_volume=19; citation_issue=2; citation_publication_date=1957; citation_pages=33-37; citation_id=CR8 Harris, D. P., 1965, An application of multivariate statistical analysis to mineral exploration: unpubl. doctoral dissertation, Pennsylvania State Univ., University Park, 261 p. citation_title=Mineral resources appraisal; citation_publication_date=1984; citation_id=CR10; citation_author=D. P. Harris; citation_publisher=Oxford Univ. Press citation_title=Mineral exploration decisions: a guide to economic analysis and modeling; citation_publication_date=1990; citation_id=CR11; citation_author=D. P. Harris; citation_publisher=John Wiley & Sons citation_journal_title=Econ. Geology; citation_title=Consistent geological areas for epithermal gold-silver deposits in the Walker Lake Quadrangle of Nevada and California delineated by quantitative methods; citation_author=D. P. Harris, G. Pan; citation_volume=86; citation_issue=1; citation_publication_date=1991; citation_pages=142-165; citation_id=CR12 Harris, D. P., and Rieber, M., 1993, Evaluation of the United States Geological Survey's three-step assessment methodology: U.S. Geol. Survey Open-File Rept. 93–258, 673 p. citation_title=Neural networks, a comprehensive foundation; citation_publication_date=1994; citation_id=CR14; citation_author=S. Haykin; citation_publisher=Macmillan College Publ. Co. or Maxwell Macmillan Intern. citation_journal_title=Math. Geology; citation_title=An empirical discriminant method applied to sedimentary rock classification from major element geochemistry; citation_author=R. J. Howarth; citation_volume=3; citation_issue=1; citation_publication_date=1971; citation_pages=51-60; citation_id=CR15 Link, A. J., 1964, A Phsico-chemical and textural study of carbonate sedimentation in a lagoonal environment: unpubl. masters thesis, Northwestern Univ., 125 p. citation_journal_title=Ann. Mathematical Statistics; citation_title=Estimation of probability density; citation_author=V. K. Murthy; citation_volume=36; citation_issue=3; citation_publication_date=1965; citation_pages=1027-1031; citation_id=CR17 citation_title=Nonparametric estimation of multivariate densities with applications; citation_inbook_title=Multivariate analysis; citation_publication_date=1966; citation_pages=43-58; citation_id=CR18; citation_author=V. K. Murthy; citation_publisher=Academic Press Orris, Greta Jean, 1997, An investigation of two methodologies for estimating boron in lacustrine settings: unpubl. doctoral dissertation, Dept. Mining and Geological Engineering, Univ. Arizona, 281 p. Pan, G. C., 1989, Concepts and methods of multivariate information synthesis for mineral resources estimation: unpubl. doctoral dissertation, Dept. of Mining and Geol. Eng., Univ. Arizona, Tucson, 302 p. citation_journal_title=Computers & Geoscience; citation_title=Canonical favorability model for data integration and mineral potential mapping; citation_author=G. C. Pan; citation_volume=19; citation_issue=8; citation_publication_date=1993; citation_pages=1077-1100; citation_id=CR21 citation_journal_title=Nonrenewable Resources; citation_title=Extended weights of evidence modeling for the pyseudo-estimation of metal grades; citation_author=G. C. Pan; citation_volume=5; citation_issue=1; citation_publication_date=1996; citation_pages=53-76; citation_id=CR22 citation_journal_title=Math. Geology; citation_title=Estimating a favorability function for the integration of geodata and selection of mineral exploration targets; citation_author=G. C. Pan, D. P. Harris; citation_volume=24; citation_issue=2; citation_publication_date=1992; citation_pages=177-202; citation_id=CR23 citation_journal_title=Ann. Mathematical Statistics; citation_title=On estimation of a probability density function and mode; citation_author=E. Parzen; citation_volume=33; citation_issue=3; citation_publication_date=1962; citation_pages=1065-1076; citation_id=CR24 citation_journal_title=Math. Geology; citation_title=Discriminant analysis as a method of predicting mineral occurrence potentials in central Norway; citation_author=A. E. Prelat; citation_volume=9; citation_issue=4; citation_publication_date=1977; citation_pages=343-367; citation_id=CR25 citation_title=Linear statistical inference and its applications; citation_publication_date=1973; citation_id=CR26; citation_author=C. R. Rao; citation_publisher=John Wiley & Sons, Inc. Reddy, R. K., Agterberg, F. P., and Bonham-Carter, G. F., 1991, Application of GIS-based logistic models to base-metal potential mapping in Snow Lake area, Manitoba: Proc. Canadian Conference on GIS, Ottawa, p. 607–618. citation_journal_title=Jour. Sed. Pet.; citation_title=Depositional mechanisms from the size analysis of clastic sediments; citation_author=B. K. Sahu; citation_volume=34; citation_issue=1; citation_publication_date=1964; citation_pages=73-83; citation_id=CR28 citation_title=SAS/STAT User's Guide; citation_publication_date=1990; citation_id=CR29; citation_publisher=SAS Institute, Inc., Sas Campus Drive citation_journal_title=Math. Geology; citation_title=Application of a feedforward neural network in the search for Kuroko deposits in the Hokuroku District, Japan; citation_author=D. A. Singer, R. Kouda; citation_volume=28; citation_issue=8; citation_publication_date=1996; citation_pages=1017-1023; citation_id=CR30 citation_journal_title=Nonrenewable Resources; citation_title=Classification of mineral deposits into types using mineralogy with a probabilistic neural network; citation_author=D. A. Singer, R. Kouda; citation_volume=6; citation_issue=1; citation_publication_date=1997; citation_pages=27-32; citation_id=CR31 Singer, D. A., and Kouda, R., 1997b, Use of neural network to integrate geoscience information in the classification of mineral deposits and occurrences, in Gubins, A. G., ed., Proc. Exploration 97: Fourth Decennial Intern. Conf. Mineral Exploration, p. 127–134. citation_journal_title=Econ. Geology; citation_title=Integrating spatial and frequency information in the search for kuroko deposits of the Hokuroku District, Japan; citation_author=D. A. Singer, K Ryoichi; citation_volume=83; citation_issue=1; citation_publication_date=1988; citation_pages=18-29; citation_id=CR33 citation_journal_title=Neural Networks; citation_title=Probabilistic neural networks; citation_author=D. F. Specht; citation_volume=3; citation_issue=1; citation_publication_date=1990; citation_pages=109-118; citation_id=CR34 citation_journal_title=IEEE Trans. Neural Networks; citation_title=A general regression neural network; citation_author=D. F. Specht; citation_volume=2; citation_issue=6; citation_publication_date=1991; citation_pages=568-576; citation_id=CR35 citation_journal_title=Proc. Intern. Joint Conference On Neural Networks; citation_title=Generalization accuracy of probabilistic neural networks compared with back-propagation networks; citation_author=D. F. Specht, P. D. Shapiro; citation_volume=1; citation_publication_date=1991; citation_pages=887-892; citation_id=CR36 citation_title=NeuroShell 2; citation_publication_date=1996; citation_id=CR37; citation_publisher=Ward Systems Group, Inc. citation_journal_title=Jour. Sed. Pet.; citation_title=Discriminating between refractory and nonrefractory quartzite by quantitative petrography; citation_author=G. V. Wood; citation_volume=31; citation_issue=4; citation_publication_date=1961; citation_pages=530-533; citation_id=CR38