Recent developments in organic redox flow batteries: A critical review

Journal of Power Sources - Tập 360 - Trang 243-283 - 2017
P. Leung1, A.A. Shah2, L. Sanz3, C. Flox3, J.R. Morante3,4, Q. Xu5, M.R. Mohamed6, C. Ponce de León7, F.C. Walsh7
1Department of Materials, University of Oxford, Oxford, OX 3PH, UK
2School of Engineering, University of Warwick, Coventry, CV4 7AL, UK
3IREC, Catalonia Institute for Energy Research, Sant Adriá del Besos, 08930, Spain
4Dept. Enginyieries: Electronica, Universitat de Barcelona, Barcelona, 08028, Spain
5Institute for Energy Research, Jiangsu University, Zhenjiang 212013, China
6Sustainable Energy & Power Electronics Research Group, Faculty of Electrical & Electronics Engineering, Universiti Malaysia Pahang, Pekan, Pahang 26600, Malaysia
7Electrochemical Engineering Laboratory, Energy Technology Group, University of Southampton, Highfield, Southampton, SO17 1BJ, UK

Tài liệu tham khảo

Skyllas-Kazacos, 2011, Progress in flow battery research and development, J. Electrochem. Soc., 158, R55, 10.1149/1.3599565 Weber, 2011, Redox flow batteries: a review, J. Appl. Electrochem, 41, 1137, 10.1007/s10800-011-0348-2 Leung, 2012, Progress in redox flow batteries, remaining challenges and their applications in energy storage, RSC Adv., 2, 10125, 10.1039/c2ra21342g Ponce de Leon, 2006, Redox flow cells for energy conversion, J. Power Sources, 160, 716, 10.1016/j.jpowsour.2006.02.095 Noack, 2015, The chemistry of redox-flow batteries, Angew. Chem. Int. Ed., 54, 9776, 10.1002/anie.201410823 Wang, 2013, Recent progress in redox flow battery research and development, Adv. Funct. Mater., 23, 970, 10.1002/adfm.201200694 Ding, 2013, Vanadium flow batteries for energy storage: prospects and challenges, J. Phys. Chem. Lett., 4, 1281, 10.1021/jz4001032 Soloveichik, 2015, Flow batteries: current status and trends, Chem. Rev., 115, 11533, 10.1021/cr500720t 2013 'Joint EASE/EERA recommendations for a European Energy Storage Technology Development Roadmap towards 2030, The European Association for Storage of Energy (EASE)'. http://www.eera-set.eu/wp-content/uploads/148885-EASE-recommendations-Roadmap-04.pdf. Pletcher, 2004, A novel flow battery: a lead acid battery based on an electrolyte with soluble lead(II) Part II. Flow cell studies, Phys. Chem. Chem. Phys., 6, 1779, 10.1039/b401116c Hagedorn, 1981, Redox storage systems for solar applications, Power Sources Res. Dev. Non-Mechanical Electr. Power Sources, 227 Sum, 1985, Investigation of the V(V)/V(IV) system for use in the positive half-cell of a redox battery, J. Power Sources, 16, 85, 10.1016/0378-7753(85)80082-3 Price, 1999, A novel approach to utility-scale energy storage, Power Eng. J., 13, 122, 10.1049/pe:19990304 Lim, 2011, Zinc-bromine secondary battery, J. Electrochem. Soc., 158, R55 Leung, 2011, Characterization of a zinc-cerium flow battery, J. Power Sources, 196, 5174, 10.1016/j.jpowsour.2011.01.095 Shin, 2013, A review of current developments in non-aqueous redox flow batteries: characterization of their membranes for design perspectives, RSC Adv., 3, 9095, 10.1039/c3ra00115f Matsuda, 1988, A rechargeable redox battery utilizing ruthenium complexes with non-aqueous organic electrolyte, J. Appl. Electrochem., 18, 909, 10.1007/BF01016050 Sleightholme, 2011, Non-aqueous manganese acetylacetonate electrolyte for redox flow batteries, J. Power Sources, 196, 5742, 10.1016/j.jpowsour.2011.02.020 Liu, 2009, Non-aqueous vanadium acetylacetonate electrolyte for redox flow batteries, Electrochem. Commun., 11, 2312, 10.1016/j.elecom.2009.10.006 Liu, 2010, Non-aqueous chromium acetylacetonate electrolyte for redox flow batteries, Electrochem. Commun., 12, 1634, 10.1016/j.elecom.2010.09.013 Kim, 2011, Development of metal-based electrodes for non-aqueous redox flow batteries, Electrochem. Commun., 13, 997, 10.1016/j.elecom.2011.06.022 Shinkle, 2011, Electrode kinetics in non-aqueous vanadium acetylacetonate redox flow batteries, J. Appl. Electrochem., 41, 1191, 10.1007/s10800-011-0314-z Leung, 2016, Evaluation of electrode materials for all-copper hybrid flow batteries, J. Power Sources, 310, 1, 10.1016/j.jpowsour.2015.12.069 Wei, 2017, Highly catalytic and stabilized titanium nitride nanowire array-decorated graphite felt electrodes for all vanadium redox flow atteries, J. Power Sources, 341, 318, 10.1016/j.jpowsour.2016.12.016 Zeng, 2016, A low-cost iron-cadmium redox flow battery for large-scale energy storage, J. Power Sources, 330, 55, 10.1016/j.jpowsour.2016.08.107 Wei, 2017, In-situ investigation of hydrogen evolution behavior in vanadium redox flow batteries, Appl. Energy, 190, 1112, 10.1016/j.apenergy.2017.01.039 Wei, 2016, Copper nanoparticle-deposited graphite felt electrodes for all vanadium redox flow batteries, Appl. Energy, 180, 386, 10.1016/j.apenergy.2016.07.134 Wu, 2017, High-performance zinc bromine flow battery via improved design of electrolyte and electrode, J. Power Sources, 355, 62, 10.1016/j.jpowsour.2017.04.058 Service, 2014, Tank for the batteries, Science, 344, 352, 10.1126/science.344.6182.352 Kear, 2012, Development of the all-vanadium redox flow battery for energy storage: a review of technological, financial and policy aspects, Int. J. Energy Res., 36, 1105, 10.1002/er.1863 Eckroad, 2002 Joerissen, 2004, Possible use of vanadium redox flow batteries for energy storage in small grids and stand-alone photovoltaic systems, J. Power Sources, 127, 98, 10.1016/j.jpowsour.2003.09.066 Janoschka, 2012, Powering up the future: radical polymers for battery applications, Adv. Mater., 24, 6397, 10.1002/adma.201203119 Nishide, 2009, Environmentally benign batteries based on organic radical polymers, Pure Appl. Chem., 81, 1960, 10.1351/PAC-CON-08-12-03 Oyaizu, 2010, Synthesis and charge transport properties of redox-active nitroxide polyethers with large site density, Macromolecules, 43, 10382, 10.1021/ma1020159 Nakahara, 2007, High-rate capable organic radical cathodes for lithium rechargeable batteries, J. Power Sources, 165, 870, 10.1016/j.jpowsour.2006.11.045 Nesvadba, 2010, Synthesis of a novel spirobisnitroxide polymer and its evaluation in an organic radical battery, Chem. Mater., 22, 783, 10.1021/cm901374u Organic-based aqueous flow batteries for massive electrical energy storage'. Presentation by M. Aziz at Princeton University, 20/10/2014, http://nuweb9.neu.edu/mres/wp-content/uploads/2014/11/Michael-Aziz-presentation.pdf. Huskinson, 2014, A metal-free organic-inorganic aqueous flow battery, Nature, 505, 195, 10.1038/nature12909 Darling, 2014, Pathways to low-cost electrochemical energy storage: a comparison of aqueous and nonaqueous flow batteries, Energy Environ. Sci., 7, 3459, 10.1039/C4EE02158D Leung, 2017, Membrane-less hybrid flow battery based on low-cost elements, J. Power Sources, 341, 36, 10.1016/j.jpowsour.2016.11.062 Gong, 2015, Nonaqueous redox-flow batteries: organic solvents, supporting electrolytes, and redox pairs, Energy Environ. Sci., 8, 3515, 10.1039/C5EE02341F Schon, 2016, The rise of organic electrode materials for energy storage, Chem. Soc. Rev., 45, 6345, 10.1039/C6CS00173D Cheng, 2015, Accelerating electrolyte discovery for energy storage with high-throughput screening, J. Phys. Chem. Lett., 6, 283, 10.1021/jz502319n Pineda Flores, 2015, Bio-Inspired electroactive organic molecules for aqueous redox flow batteries. 1. Thiophenoquinones, J. Phys. Chem. C, 119, 21800, 10.1021/acs.jpcc.5b05346 Moon, 2016, Computational screening of organic molecules as redox active species in redox flow batteries, Curr. Appl. Phys., 1, 939, 10.1016/j.cap.2016.05.012 Xu, 2004, Nonaqueous liquid electrolytes for lithium-based rechargeable batteries, Chem. Rev., 104, 4303, 10.1021/cr030203g Wang, 2016, Energy storage: redox flow batteries go organic, Nat. Chem., 8, 204, 10.1038/nchem.2466 Sevov, 2015, Evolutionary design of low molecular weight organic anolyte materials for applications in nonaqueous redox flow batteries, J. Am. Chem. Soc., 137, 14465, 10.1021/jacs.5b09572 G.L. Soloveichik, 'System and method for electrochemical energy conversion and storage', US Patent 8338055 B2, 25 Dec 2012. Xu, 2017, The applications and prospect of fuel cells in medical field: a review, Renew. Sustain. Energy Rev., 67, 574, 10.1016/j.rser.2016.09.042 Osman, 2011, Recent progress and continuing challenges in bio-fuel cells. Part I: enzymatic cells, Biosens. Bioelectron., 26, 3087, 10.1016/j.bios.2011.01.004 Milshtein, 2015, Voltammetry study of quinoxaline in aqueous electrolyte, Electrochim. Acta, 180, 695, 10.1016/j.electacta.2015.07.063 García, 2014 Zhao, 2015, A chemistry and material perspective on lithium redox flow batteries towards high-density electrical energy storage, Chem. Sov. Rev., 44, 7968, 10.1039/C5CS00289C Liu, 2016, A total organic aqueous redox flow battery employing a low cost and sustainable methyl viologen anolyte and 4-HO-TEMPO catholyte, Adv. Energy. Mater., 6, 1501449, 10.1002/aenm.201501449 Wei, 2015, Radical compatibility with nonaqueous electrolytes and its impact on an all-organic redox flow battery, Angew. Chem. Int. Ed., 127, 1, 10.1002/ange.201501443 Dmello, 2016, Cost-driven materials selection criteria for redox flow battery electrolytes, J. Power Sources, 330, 261, 10.1016/j.jpowsour.2016.08.129 Takechi, 2015, A Highly concentrated catholyte based on a solvate ionic liquid for rechargeable flow batteries, Adv. Mater., 27, 2501, 10.1002/adma.201405840 Duduta, 2011, Semi-solid lithium rechargeable flow battery, Adv. Energy Mater., 1, 511, 10.1002/aenm.201100152 Pan, 2015, Redox species of redox flow batteries: a review, Molecules, 20, 20499, 10.3390/molecules201119711 Huang, 2015, New-generation, high-energy-density redox flow batteries, ChemPlusChem, 80, 312, 10.1002/cplu.201402099 Parasuraman, 2013, Review of material research and development for vanadium redox flow battery applications, Electrochim. Acta, 101, 27, 10.1016/j.electacta.2012.09.067 Alotto, 2014, Redox flow batteries for the storage of renewable energy: a review, Renew. Sustain. Energy Rev., 29, 325, 10.1016/j.rser.2013.08.001 Xu, 2015, Fundamental models for flow batteries, Prog. Energy Combust. Sci., 49, 40, 10.1016/j.pecs.2015.02.001 Laramie, 2016, Performance and cost characteristics of multi-electron transfer, common ion exchange non-aqueous redox flow batteries, J. Power Sources, 327, 681, 10.1016/j.jpowsour.2016.07.015 Kowalski, 2016, Recent advances in molecular engineering of redox active organic molecules for nonaqueous flow batteries, Curr. Opin. Chem. Eng., 13, 45, 10.1016/j.coche.2016.08.002 Winsberg, 2016, Redox-flow batteries: from metals to organic redox-active materials, Angew. Chem. Int. Ed., 56, 686, 10.1002/anie.201604925 Park, 2016, Materials design and engineering of next-generation flow battery technologies, Nat. Rev., 2 Janoschka, 2015, An aqueous, polymer-based redox-flow battery using non-corrosive, safe, and low-cost materials, Nature, 527, 78, 10.1038/nature15746 Xu, 2009, Study on a single flow acid Cd-chloranil battery, Electrochem. Commun., 11, 1422, 10.1016/j.elecom.2009.05.021 Winsberg, 2016, Polymer/zinc hybrid-flow battery using block copolymer micelles featuring a TEMPO corona as catholyte, Polym. Chem., 7, 1711, 10.1039/C5PY02036K Wang, 2012, Anthraquinone with tailored structure for a nonaqueous metal–organic redox flow battery, Chem. Commun., 48, 6669, 10.1039/c2cc32466k Lin, 2015, Alkaline quinone flow battery, science, 349, 1529, 10.1126/science.aab3033 Cappillino, 2014, Application of Redox Non-innocent ligands to non-aqueous flow battery electrolytes, Adv. Energy Mater., 4, 1 Chakrabarti, 2011, Ruthenium based redox flow battery for solar energy storage, Energy Convers. Manage, 52, 2501, 10.1016/j.enconman.2011.01.012 Huang, 2015, Liquid catholyte molecules for nonaqueous redox flow batteries, Adv. Energy Mater., 5, 1, 10.1002/aenm.201401782 Bae, 2002, Chromium redox couples for applicaton to redox flow batteries, Electrochim. Acta, 48, 279, 10.1016/S0013-4686(02)00649-7 Ibanez, 1987, Aqueous redox transition metal complexes for electrochemical applications as a function of pH, J. Electrochem. Soc., 134, 3083, 10.1149/1.2100344 Chen, 1981, Solution redox couples for electrochemical energy storage I. Iron(III)-Iron(II) complexes with O-phenanthroline and related ligands, J. Electrochem. Soc., 128, 1460, 10.1149/1.2127663 Wen, 2013, A study of the Fe(III)/Fe(II)-triethanolamine complex redox couple for redox flow battery application, Electrochim. Acta, 94, 336 Murthy, 1989, Fe(III)/Fe(II) - ligand systems for use as negative half-cells in redox-flow cells, J. Power Sources, 27, 119, 10.1016/0378-7753(89)80126-0 Modiba, 2013, Kinetics study of transition metal complexes (Ce-DTPA, Cr-DTPA and V-DTPA) for redox flow battery applications, Electrochim. Acta, 94, 336, 10.1016/j.electacta.2013.01.081 Chakrabarti, 2007, Evaluation of electrolytes for redox flow battery applications, Electrochim. Acta, 52, 2189, 10.1016/j.electacta.2006.08.052 Mun, 2012, Non-aqueous redox flow batteries with nickel and iron tris(2,2'-bipyridine) complex electrolyte, Electrochem. Solid-State Lett., 15, A80, 10.1149/2.033206esl Leung, 2011, Ce(III)/Ce(IV) in methanesulfonic acid as the positive half cell of a redox flow battery, Electrochim. Acta, 56, 2145, 10.1016/j.electacta.2010.12.038 Hazza, 2004, A novel flow battery: a lead acid battery based on an electrolyte with soluble lead(II) Part I: preliminary studies, Phys. Chem. Chem. Phys., 6, 1773, 10.1039/b401115e Leung, 2015, A mixed acid based vanadium-cerium redox flow battery with a zero-gap serpentine architecture, J. Power Sources, 274, 651, 10.1016/j.jpowsour.2014.10.034 Leung, 2011, Zinc deposition and dissolution in methanesulfonic acid onto a carbon composit electrode as the negative electrode reactions in a hybrid redox flow battery, Electrochim. Acta, 18, 6536, 10.1016/j.electacta.2011.04.111 Rajarathnam, 2016, 1 Rajarathnam, 2016, The influence of ionic liquid additives on zinc half-cell electrochemical performance in zinc/bromine flow batteries, RSC Adv., 6, 27788, 10.1039/C6RA03566C Chakrabarti, 2014, Prospects of applying ionic liquids and deep eutectic solvents for renewable energy storage by means of redox flow batteries, Renew. Sustain. Energy Rev., 30, 254, 10.1016/j.rser.2013.10.004 G.B. Adams, 'Electrically rechargeable batteries', US Patent 4180623, 25 Dec 1979, (1979). L. Zhang, Z. Zhang, K. Amine, 'Redox shuttle additives for lithium-ion batteries, - new developments', Publ. InTech, 173–188. Ding, 2017, A high-performance all-metallocene-based non-aqueous redox flow battery, Energy Environ. Sci., 10, 491, 10.1039/C6EE02057G Wei, 2015, Towards high-performance nonaqueous redox flow electrolyte via ionic modification of active species, Adv. Energy Mater., 5, 1400678, 10.1002/aenm.201400678 Zhao, 2014, Sustainable electrical energy storage through the ferrocene/ferrocenium redox reaction in aprotic electrolyte, Angew. Chem. Int. Ed., 53, 11036, 10.1002/anie.201406135 Huang, 2013, Reversible chemical delithiation/lithiation of LiFePO4: towards a redox flow lithium-ion battery, Phys. Chem. Chem. Phys., 15, 1793, 10.1039/C2CP44466F Pan, 2014, Redox targeting of Aaatase TiO2 for redox flow lithium-ion batteries, Adv. Energy Mater., 4, 1400567, 10.1002/aenm.201400567 Pan, 2016, High-energy density redox flow lithium battery with unprecented voltage efficiency, Chem. Mater., 28, 2052, 10.1021/acs.chemmater.5b04558 Huang, 2016, A redox flow lithium battery based on the redox targeting reactions between LiFePO4 and iodide, Energy Environ. Sci., 9, 917, 10.1039/C5EE03764F Jia, 2015, High-energy density nonaqueous all redox flow lithium battery enabled with a polymeric membrane, Sci. Adv., 1, e1500886, 10.1126/sciadv.1500886 Wang, 2006, Redix targeting of insulating electrode materials: a new approach to high-energy-density batteries, Angew. Chem. Int. Ed., 118, 8377, 10.1002/ange.200602891 Zhu, 2015, Dual redox catalysts for oxygen reduction and evolution reactions: towards a redox flow Li-O2 battery, Chem. Commun., 51, 9451, 10.1039/C5CC01616A Zhu, 2016, Redox-mediated ORR and OER reactions: redox flow lithium oxygen batteries enabled with a pair of soluble redox catalysts, ACS Catal., 6, 6191, 10.1021/acscatal.6b01478 Zhu, 2017, Proton enhanced dynamic battery chemistry for aprotic lithium-oxygen batteries, Nat. Comm., 8, 14308, 10.1038/ncomms14308 Li, 2015, The application of redox targeting principles to the design of rechargeable Li-S flow batteries, Adv. Energy Mater., 5, 1501808, 10.1002/aenm.201501808 Chen, 2015, Sulphur-impregnated flow cathode to enable high-energy-density lithium flow batteries, Nat. Comm., 6, 5877, 10.1038/ncomms6877 Fan, 2017, Redox catalysis for improved counter-electrode kinetics in dye-sensistized solar cells, ChemElectroChem, 10.1002/celc.201700103 Peljo, 2016, Ion transfer battery: storing energy by transferring ions across liquid–liquid interfaces, Chem. Commun., 52, 9761, 10.1039/C6CC04325A Conant, 1992, An electrochemical study of the reversible reduction of organic compounds, J. Am. Chem. Soc., 44, 1382, 10.1021/ja01427a020 Fieser, 1928, The tautomerism of hydroxyl quinones, J. Am. Chem. Soc., 50, 439, 10.1021/ja01389a033 G.L. Soloveichik, J.C. Zhao, 'Method and apparatus for electrochemical energy conversion', US Patent 20080248345 A1, 09 Oct 2008. Soloveichik, 2014, Liquid fuel cells, Beilstein J. Nanotechnol., 5, 1399, 10.3762/bjnano.5.153 Moyses Araujo, 2012, Fuel selection for a regenerative organic fuel cell/flow battery: thermodynamic considerations, Energy Environ. Sci., 5, 9534, 10.1039/c2ee22749e Er, 2015, Computational design of molecules for an all-quinone redox flow battery, Chem. Sci., 6, 885, 10.1039/C4SC03030C Carino, 2016, Tuning the stability of organic active materials for nonaqueous redox flow batteries via reversible, electrochemically mediated Li+ coordination, Chem. Mater., 28, 2529, 10.1021/acs.chemmater.5b04053 Ding, 2016, Exploring bio-inspired quinone-based organic redox flow batteries: a combined experimental and computational study, Chem, 1, 790, 10.1016/j.chempr.2016.09.004 Chen, 2016, A quinone-bromide flow battery with 1 W cm-2 power density, J. Electrochem. Soc., 163, A5010, 10.1149/2.0021601jes Yang, 2014, An inexpensive aqueous flow battery for large-scale electrical energy storage based on water-soluble organic redox couples, J. Electrochem. Soc., 161, A1371, 10.1149/2.1001409jes Yang, 2016, High-performance aqueous organic flow battery with quinone-based redox couples at both electrodes, J. Electrochem. Soc., 163, A1442, 10.1149/2.1371607jes Zhang, 2016, An organic electroactive material for flow batteries, Electrochim. Acta, 190, 737, 10.1016/j.electacta.2015.12.139 Li, 2015, Modeling and simulation study of a metal free organic–inorganic aqueous flow battery with flow through electrode, Electrochim. Acta, 170, 98, 10.1016/j.electacta.2015.04.075 Nawar, 2013, Benzoquinone-hydroquinone couple for flow battery, Mater. Res. Soc. Symp. Proc., 1491, 1, 10.1557/opl.2012.1737 F.R. Brushett, A.N. Jansen, J.T. Vaughey, L. Su, J.D. Milshtein, 'Materials for use with aqueous redox flow batteries and related methods and systems', US Patent 2015/0236543 A1, 20 Aug 2015. Bailey, 1983, The construction and use of potential-pH diagrams in organic oxidation-reduction reactions, J. Chem. Soc. Perkin Trans., 11, 645, 10.1039/P29830000645 Quan, 2007, Voltammetry of quinones in unbuffered aqueous solution: reassessing the roles of proton transfer and hydrogen bonding in the aqueous electrochemistry of quinones, J. Am. Chem. Soc., 129, 12847, 10.1021/ja0743083 Chambers, 1988, 719 Thurman, 1985, 94 'Chemical property of anthraquinone-2,6-disulfonic acid disodium salt (853-68-9)'. http://www.chemicalbook.com/ProductChemicalPropertiesCB5481901_EN.htm. S. Narayan, S.G.K. Prakash, B. Yang, L. Hoober-Burkhardt, S. Krishnamoorthy, 'Inexpensive metal-free organic redox flow battery (orbat) for grid-scale storage', US Patent 20140370403 A1, 18 Dec, 2014. Miertus, 1981, Electrostatic interaction of a solute with a continuum. A direct utilization of AB initio molecular potetentials for the prevision of solvent effects, Chem. Phys., 1, 117, 10.1016/0301-0104(81)85090-2 Biilmann, 1924, Oxidation and reduction potentials of organic compounds, Trans. Faraday Soc., 19, 676, 10.1039/tf9241900676 Hale, 1963, Reduction of p-quinones at a dropping mercury electrode, Trans. Faraday Soc., 59, 1429, 10.1039/tf9635901429 Philip, 1964, The polarographic reduction of some aryl diketones, J. Electrochem. Soc., 111, 328, 10.1149/1.2426117 Sharma, 1997, 249 Cepeda, 1989, Solubility of anthracene and anthraquinone in some pure and mixed solvents, J. Chem. Eng. Data, 34, 273, 10.1021/je00057a005 Aaron, 2012, Dramatic performance gains in vanadium redox flow batteries through modified cell architecture, J. Power Sources, 206, 450, 10.1016/j.jpowsour.2011.12.026 Strier, 1957, The polarography of quinoxaline, J. Am. Chem. Soc., 79, 4331, 10.1021/ja01573a024 Aleksic, 2014, Evaluation of kinetic parameters and redox mechanism of quinoxaline at glassy carbon electrode, Facta Univ. Ser. Phys. Chem. Technol., 12, 55, 10.2298/FUPCT1401055A Imabayashi, 1988, Substituent effects on electrochemical reduction of viologen dimer and trimer with ethylene spacer, J. Electroanal. Chem., 239, 397, 10.1016/0022-0728(88)80294-8 Imabayashi, 1988, The role of intramolecular association in the electrochemical reduction of viologen dimers and trimers, J. Electroanal. Chem., 243, 143, 10.1016/0022-0728(88)85035-6 Silwa, 1991, Chemistry of viologens, Heterocycles, 11, 2241, 10.3987/REV-91-424 Bird, 1981, Electrochemistry of the viologens, Chem. Soc. Rev., 10, 49, 10.1039/cs9811000049 Mortimer, 1990, Organic electrochromic materials, Electrochim. Acta., 44, 2971, 10.1016/S0013-4686(99)00046-8 Li, 2011, Ion exchange membranes for vanadium redox flow battery (VRB) applications, Energy Environ. Sci., 4, 1147, 10.1039/c0ee00770f Xu, 2010, A study of tiron in aqueous solutions for redox flow battery application, Electrochim. Acta, 55, 715, 10.1016/j.electacta.2009.09.031 Orita, 2016, A biomimetic redox flow battery based on flavin mononucleotide, Nat. Comm., 7, 13230, 10.1038/ncomms13230 Lin, 2016, A redox-flow battery with an alloxazine-based organic electrolyte, Nat. Energy, 1 Winsberg, 2016, Poly(TEMPO)/zinc hybrid-flow battery: a novel, “green,” high voltage, and safe energy storage system, Adv. Mater., 28, 2238, 10.1002/adma.201505000 Leung, 2016, Membrane-less organic-inorganic aqueous flow batteries with improved cell potential, Chem. Comm., 52, 14270, 10.1039/C6CC07692K Alt, 1972, Investigation into the use of quinone compounds-for battery cathodes, Electrochim. Acta, 17, 873, 10.1016/0013-4686(72)90010-2 McLarnon, 1991, The secondary alkaline zinc electrode, J. Electrochem. Soc., 138, 645, 10.1149/1.2085653 Leung, 2011, An undivided zinc-cerium redox flow battery operating at room temperature (295 K), Electrochem. Commun., 13, 770, 10.1016/j.elecom.2011.04.011 Papauchado, 1972, Anodic oxidation pathways of phenolic compounds. Part I. Anodic hydroxylation reactions, J. Electroanal. Chem., 38, 389, 10.1016/S0022-0728(72)80349-8 B. Huskinson, M. Marshak, M.J. Aziz, R.G. Gordon, 'Small organic molecule based flow battery', US 20160043423 A1, 3 April 2014. B. Huskinson, M. Marshak, M.J. Aziz, R.G. Gordon, A. Aspuru-Guzik, S. Er, C. Suh, L. Tong, K. Lin, 'Quinone and hydroquinone based flow battery', Patent WO2015048550, 02 April 2015. W.O. Gordon, E. Plattner, F. Doppenberg, 'Production of pulp by the soda-anthraquinone process (SAP) with recovery of the cooking chemicals', US Patent 5,595,628, 21 Jan 1997. Crossley, 1915, The separation of mono-β, 2,6- and 2,7-sulfonic acids of anthraquinone, J. Am. Chem. Soc., 37, 2178, 10.1021/ja02174a028 US Geological Survey, 2010 G.G. II. Joseph, A.J. Gotcher, G. Sikha, G.J. Wilson, 'High performance flow battery', US Patent 20110244277 A1, 6 Oct 2011. J.R. Goldstein, 'Novel flow battery and usage thereof', US Patent 20150048777 A1, 19 Feb 2015. 1974 Giacomelli, 2002, Electrochemistry of caffeic acid aqueous solutions with pH 2.0 to 8.5, J. Braz. Chem. Soc., 13, 332, 10.1590/S0103-50532002000300007 Lee, 2013, Redox cofactor from biological energy transduction as molecularly tunable energy-storage compound, Angew. Chem. Int. Ed., 52, 8322, 10.1002/anie.201301850 Chen, 2012, Organocatalytic Dakin oxidation by nucleophilic flavin catalysts, Org. Lett., 14, 2806, 10.1021/ol3010326 de Gonzalo, 2011, Turning a riboflavin-binding protein into a self-sufficient monooxygenase by cofactor redesign, Chem. Commun., 47, 11050, 10.1039/c1cc14039f Linden, 2006, Efficient and selective sulfoxidation by hydrogen peroxide, using a recyclable flavin-[BMIm]PF6 catalytic system, J. Org. Chem., 71, 3849, 10.1021/jo060274q Yamamura, 2002, Electrochemical investigation of uranium β-diketonates for all-uranium redox battery, Electrochim. Acta, 48, 43, 10.1016/S0013-4686(02)00546-7 Yang, 2013, A membrane-free lithium/polysulfide semi-liquid battery for large-scale energy storage, Energy Environ. Sci., 6, 1552, 10.1039/c3ee00072a Fan, 2014, Polysulfide flow batteries enabled by percolating nanoscale conductor networks, Nano Lett., 14, 2210, 10.1021/nl500740t Su, 2014, Electrolyte development for non-aqueous redox flow batteries using a high-throughput screening platform, J. Electrochem. Soc., 161, A1905, 10.1149/2.0811412jes Hayashi, 1997, Electrolyte for high voltage Li/LiMn1.9Co0.1O4 cells, J. Power Sources, 68, 316, 10.1016/S0378-7753(97)02636-0 Poisson, 1980, Conductivity/salinity/temperature relationship of diluted and concentrated standard seawater, IEEE J. Ocean. Eng., 5, 41, 10.1109/JOE.1980.1145442 Milshtein, 2016, High current density, long duration cycling of soluble organic active species for non-aqueous redox flow batteries, Energy Environ. Sci., 9, 3531, 10.1039/C6EE02027E Darling, 2016, Transport property requirements for flow battery separators, J. Electrochem. Soc., 163, A5029, 10.1149/2.0051601jes Su, 2016, An investigation of the ionic conductivity and species crossover of lithiated Nafion 117 in nonaqueous electrolyte, J. Electrochem. Soc., 163, A5253, 10.1149/2.03211601jes Wei, 2016, A high-current, stable nonaqueous organic redox flow battery, ACS Energy Lett., 1, 705, 10.1021/acsenergylett.6b00255 Brushett, 2012, An all-organic non-aqueous lithium-ion redox flow battery, Adv. Energy Mater., 1390, 10.1002/aenm.201200322 Potash, 2016, On the benefits of a symmetric redox flow battery, J. Electrochem. Soc., 163, A338, 10.1149/2.0971602jes Potash, 2015 Oh, 2014, Metal-free and all-organic redox flow battery with polythiophene as the electroactive species, J. Mater. Chem. A, 2, 19994, 10.1039/C4TA04730C Chen, 2009, Redox shuttles for safer lithium-ion batteries, Electrochim. Acta, 54, 5605, 10.1016/j.electacta.2009.05.017 Behl, 1988, Electrochemical overcharge protection of rechargeable lithium batteries I. Kinetics of iodide/tri-Iodide/iodine redox reactions on platinum in LiAsF6/tetrahydrofuran solutions, J. Electrochem. Soc., 135, 16, 10.1149/1.2095545 Abraham, 1990, n-Butylferrocene for overcharge protection of secondary lithium batteries, J. Electrochem. Soc., 137, 1856, 10.1149/1.2086817 Moshurchak, 2009, High-potential redox shuttle for use in lithium-ion batteries, J. Electrochem. Soc., 156, A309, 10.1149/1.3077578 Li, 2011, Electrochemical properties of an all-organic redox flow battery using 2,2,6,6-tetramethyl-1-piperidinyloxy and N-methylphthalimide, Electrochem. Solid-State Lett., 14, A171, 10.1149/2.012112esl Park, 2015, Electrochemical properties of a non-aqueous redox battery with all-organic redox couples, Electrochem. Commun., 59, 68, 10.1016/j.elecom.2015.07.013 Kaur, 2015, A highly soluble organic catholyte for non-aqueous redox flow batteries, Energy Technol., 3, 476, 10.1002/ente.201500020 Duan, 2016, A symmetric organic-based non-aqueous redox flow battery and its state of charge diagnostics by FTIR, J. Mater. Chem. A, 4, 5448, 10.1039/C6TA01177B Winsberg, 2016, Poly(boron-dipyrromethene) - a redox-active polymer class for polymer redox-flow batteries, Chem. Mater., 28, 3401, 10.1021/acs.chemmater.6b00640 Forrester, 1964, Stable nitroxide radicals, Nature, 203, 74, 10.1038/203074a0 Nishide, 2004, Organic radical battery: nitroxide polymers as a cathode-active material, Electrochim. Acta, 50, 827, 10.1016/j.electacta.2004.02.052 Nakahara, 2002, Rechargeable batteries with organic radical cathodes, Chem. Phys. Lett., 359, 351, 10.1016/S0009-2614(02)00705-4 Leedy, 1971, Cathodic reduction of phthalimide systems in non-aqueous solutions, J. Am. Chem. Soc., 93, 4263, 10.1021/ja00746a029 Oyaizu, 2010, Redox-active polyimide/carbon nanocomposite electrodes for reversible charge storage at negative potentials: expanding the functional horizon of polyimides, J. Mater. Chem., 20, 5404, 10.1039/c0jm00042f Bourke, 2016, Electrode kinetics of vanadium flow batteries: contrasting responses of V(II) - (VIII) and V(IV) - V(V) to electrochemical pretreatment of carbon, J. Electrochem. Soc., 163, A5097, 10.1149/2.0131601jes Chang, 2011, Novel quinoxaline-based organic sensitizers for dye-sensitized solar cells, Org. Lett., 13, 3880, 10.1021/ol2012378 Lee, 2009, Low band-gap polymers based on quinoxaline derivatives and fused thiophene as donor materials for high efficiency bulk-heterojunction photovoltaic cells, J. Mater. Chem., 19, 4938, 10.1039/b823536h Li, 2011, A stable vanadium redox-flow battery with high energy density for large-scale energy storage, Adv. Energy Mater., 1, 394, 10.1002/aenm.201100008 Kaur, 2014, 3,7-bis(trifluoromethyl)-N-ethylphenothiazine: a redox shuttle with extensive overcharge protection in lithium-ion batteries, J. Mater. Chem. A, 2, 18190, 10.1039/C4TA04463K Schwenke, 2013, Stability of superoxide radicals in glyme solvents for non-aqueous Li-O2 battery electrolytes, Phys. Chem. Chem. Phys., 15, 11830, 10.1039/c3cp51531a Nasybulin, 2013, Effects of electrolyte salts on the performance of Li-O2 batteries, J. Phys. Chem. C, 117, 2635, 10.1021/jp311114u S.J. Lee, B.G. Kim, 'Method for preparing electrolyte for vanadium redox flow battery using vanadium oxide', US Patent 20150056525 A1, 26 Feb , 2015. Mohamed, 2015, Performance characterization of a vanadium redox flow battery at different operating parameters under a standardized test-bed system, Appl. Energy, 147, 402, 10.1016/j.apenergy.2014.10.042 Conkling, 1985, 159 Suga, 2011, p- and n-type bipolar redox-active radical polymer: toward totally organic polymer-based rechargeable devices with variable configuration, Adv. Mater., 23, 751, 10.1002/adma.201003525 Lee, 2011, Nitronyl nitroxide radicals as organic memory elements with both n- and p- type properties, Angew. Chem. Int. Ed., 50, 4414, 10.1002/anie.201004899 Akita, 1997, Magnetic properties of nitronyl nitroxide radicals substituted in phenylboronic acid the BOH O hydrogen bond as a constituent unit of a one-dimensional suprastructure exhibiting a ferromagnetic spin interaction', Adv. Mater., 9, 346, 10.1002/adma.19970090414 Huang, 2013, Multi-electron redox reaction of an organic radical cathode induced by a mesopore carbon network with nitroxide polymers, Phys. Chem. Chem. Phys., 15, 20921, 10.1039/c3cp54358g Sukegawa, 2014, Expanding the dimensionality of polymers populated with organic robust radicals toward flow cell application: synthesis of TEMPO-crowded bottlebrush polymers using anionic polymerization and ROMP, Macromolecules, 47, 8611, 10.1021/ma501632t Li, 2009, Conducting polymer nanomaterials: electrosynthesis and applications, Chem. Soc. Rev., 38, 2397, 10.1039/b816681c Hauffman, 2014, Micellar cathodes from self-assembled nitroxide-containing block copolymers in battery electrolytes, Macromol. Rapid Commun., 35, 228, 10.1002/marc.201300532 Hauffman, 2013, Synthesis of nitroxide-containing block copolymers for the formation of organic cathodes, J. Polym. Sci. Part A Polym. Chem., 51, 101, 10.1002/pola.26279 Boens, 2015, Postfunctionalization of the BODIPY core: synthesis and spectroscopy, Eur. J. Org. Chem., 30, 6577, 10.1002/ejoc.201500682 Singh, 2014, Evolution of BODIPY dyes as potential sensitizers for dye-sensitized solar cells, Eur. J. Org. Chem., 22, 4689, 10.1002/ejoc.201400093 Kowada, 2015, BODIPY-based probes for the fluorescene imaging of biomolecules in living cells, Chem. Soc. Rev., 44, 4953, 10.1039/C5CS00030K F. Harnisch, U.P.D. Schroder, M.P.D. Broring, 'Use of metal-free organonitrogen compound as redox-active Substance used in redox electrolyte for energy storage accumulator, fuel ell and redox flow battery, contains two five- or six- diatomic annealed rings', German Patent DE102012015176A1, 6 Feb 2014. Kim, 2015, Tailoring the solid-state fluorescene emission of BODIPY dyes by meso substitution, Chem. - Eur. J., 21, 17459, 10.1002/chem.201503040 Nepomnyashchii, 2010, Dependence of electrochemical and electrogenerated chemiluminescene properties on the structure of BODIPY dyes. Unusually large separation between sequential electron Ttansfers, J. Am. Chem. Soc., 132, 17550, 10.1021/ja108108d Senoh, 2011, A two-compartment cell for using soluble benzoquinone derivatives as active materials in lithium secondary batteries, Electrochim. Acta, 56, 10145, 10.1016/j.electacta.2011.08.115 Wei, 2014, TEMPO-based catholyte for high-energy density nonaqueous redox flow batteries, Adv. Mater., 26, 7649, 10.1002/adma.201403746 Wang, 2010, The electrochemical reduction of 1,4-benzoquinone in 1-ethyl-3-methylimidazolium bis(trifluoromethane-sulfonyl)-imide, [C2mim][NTf2]: a voltammetric study of the comproportionation between benzoquinone and the benzoquinone dianion, J. Electronal. Chem., 648, 134, 10.1016/j.jelechem.2010.07.016 Xiang, 2008, A novel coordination polymer as positive electrode material for lithium ion battery, Cryst. Growth Des., 8, 280, 10.1021/cg070386q Nagaoka, 1982, Ion-pair effects on the electroreduction of carbonyl compounds in N,-dimethylformamide, J. Electroanal. Chem., 133, 89, 10.1016/0022-0728(82)87008-3 Stutts, 1987, The lithium salt of benzoquinone radical anion and voltammetric anomalies, J. Electroanal. Chem., 234, 357, 10.1016/0022-0728(87)85219-1 Zhang, 2010, Understanding the redox shuttle stability of 3,5-di-tert-butyl-1,2-dimethoxybenzene for overcharge protection of lithium-ion batteries, J. Power Sources, 195, 4857, 10.1016/j.jpowsour.2010.02.075 Zhang, 2012, Molecular engineering towards safer lithium-ion batteries: a highly stable and compatible redox shuttle for overcharge protection, Energy Environ. Sci., 5, 8204, 10.1039/c2ee21977h Suga, 2007, Cathode- and anode-active poly(nitroxylstyrene)s for rechargeable batteries: p- and n-type redox switching via substituent effects. Macromolecules, Macromolecules, 40, 3167, 10.1021/ma0628578 Suga, 2009, Emerging n-type redox-active radical polymer for a totally organic polymer-based rechargeable battery, Adv. Mater., 21, 1627, 10.1002/adma.200803073 Qu, 2007, Helical polyacetylenes carrying 2,2,6,6-tetramethyl-1-piperidinyloxy and 2,2,5,5-tetramethyl-1-pyrrolidinyloxy moieties: their synthesis, properties, and function, J. Polym. Sci. Part A Polym. Chem., 45, 5431, 10.1002/pola.22288 Leung, 2017, Cyclohexanedione as the negative electrode reaction for aqueous organic redox flow batteries, Appl. Energy, 197, 318, 10.1016/j.apenergy.2017.04.023 Arenas-Martínez, 2017, Engineering aspects of the design, construction and performance of modular redox flow batteries for energy storage, J. Energy Storage, 11, 119, 10.1016/j.est.2017.02.007