A new flip-flop based on discrete-time parametric amplifier

Mehdi Ghavidel Jaliseh1, Abdolreza Nabavi1, Hadi Saeidpour Azar1, Jila Amini-sheshdeh2
1Faculty of Electrical and Computer Eng., Tarbiat Modares University, Tehran, Iran
2Faculty of Engineering & Technology of Alzahra University, Tehran, Iran

Tài liệu tham khảo

Elmasry, 1982, Nanosecond NMOS VLSI Current Mode Logic, IEEE J Solid-State Circuits, 17, 411, 10.1109/JSSC.1982.1051750 Alioto, 2007, Power–delay–area–noise margin tradeoffs in positive-feedback MOS current-mode logic, IEEE Trans Circuits Syst I Regul Pap, 54, 1916, 10.1109/TCSI.2007.904685 Razavi B. Charge steering: A low-power design paradigm. In: Proceedings of the IEEE 2013 Custom Integrated Circuits Conference 2013. http://doi.org/10.1109/cicc.2013.6658443. Hassan KM, Ibrahim SA. A Non-Return-to-Zero Charge-Steering Flip-Flop for High-Speed Wireline Transceivers. 2019 IEEE Jordan International Joint Conference on Electrical Engineering and Information Technology (JEEIT). 2019. http://doi.org/10.1109/jeeit.2019.8717486. Allam, 2001, Dynamic current mode logic (DyCML): a new low-power high-performance logic style, IEEE J Solid-State Circuits, 36, 550, 10.1109/4.910495 Ahn, 2014, A low-power CDR using dynamic CML latches and V/I converter merged with XOR for half-rate linear phase detection, IEICE Electron Express, 11, 10.1587/elex.11.20140657 Shen, 2017, Dynamic current mode logic based flip-flop design for robust and low-power security integrated circuits, Electron Lett, 53, 1236, 10.1049/el.2017.2415 Lin, 2018, A novel low power flip-flop design using footless scheme, Analog Integr Circ Sig Process, 97, 365, 10.1007/s10470-018-1327-x Rahbari, 2019, Novel ternary D-Flip-Flap-Flop and counter based on successor and predecessor in nanotechnology, AEU Int J Electron Commun, 109, 107, 10.1016/j.aeue.2019.07.008 Ranganathan, 2003, Discrete-time parametric amplification based on a three-terminal MOS varactor: analysis and experimental results, IEEE J Solid-State Circuits, 38, 2087, 10.1109/JSSC.2003.819162 Sankar, 2018, A novel method of discrete-time signal amplification using NEMS devices, IEEE Trans Electron Devices, 65, 5111, 10.1109/TED.2018.2867547 Hoda Seyedhosseinzadeh B, Nabavi A. A MOS parametric integrator with improved linearity for SC ΣΔ modulators. In: IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 62, no. 3; March 2015. p. 231–35. http://doi.org/10.1109/tcsii.2014.2368971. Hassan, 2005, MOS current mode circuits: analysis, design, and variability, IEEE Trans Very Large Scale Integration (VLSI) Systems, 13, 885, 10.1109/TVLSI.2005.853609 Bai, 2012 Sakare, 2016, Bandwidth enhancement of flip-flops using feedback for high-speed integrated circuits, IEEE Trans Circuits Syst II: Express Briefs, 63, 768, 10.1109/TCSII.2016.2531098 Chae, 2019, A 10.4-Gb/s 1-Tap Decision Feedback Equalizer with Different Pull-Up and Pull-Down Tap Weights for Asymmetric Memory Interfaces, IEEE Trans Circuits Syst II Express Briefs, 1 Wang Y, Li Z, Zhuang J, Zhi C, Yue CP. A 26-Gb/s 8.1-mW receiver with linear sampling phase detector for data and edge equalization. In: 2017 IEEE Symposium on VLSI Circuits. 2017. http://dx.doi.org/10.23919/vlsic.2017.8008526. Hsieh, 2011, Decision feedback equalizers using the back-gate feedback technique, IEEE Trans Circuits Syst II Express Briefs, 58, 897, 10.1109/TCSII.2011.2172520 Fallahi, 2017, A low-power three-tap DFE with switched resistor slicer and CTLE in 0.18 μm CMOS technology, J Circuits, Syst Comput, 26, 1750199, 10.1142/S0218126617501997 Ismail A, Ibrahim S, Dessouky M. A 8 Gbps 0.67mW 1 tap current integrating DFE in 40nm CMOS. In: 2014 IEEE 57th International Midwest Symposium on Circuits and Systems (MWSCAS). 2014. http://doi.org/10.1109/mwscas.2014.6908357. Emami-Neyestanak, 2007, A 6.0-mW 10.0-Gb/s receiver with switched-capacitor summation DFE, IEEE J Solid-State Circuits, 42, 889, 10.1109/JSSC.2007.892156 Gaggatur, 2019, A power efficient active inductor-based receiver front end for 20 Gb/s high speed serial link, AEU Int J Electron Commun, 111, 152886, 10.1016/j.aeue.2019.152886 Awny, 2018, A linear differential transimpedance amplifier for 100-Gb/s Integrated Coherent Optical Fiber Receivers, IEEE Trans Microwave Theory Tech, 66, 973, 10.1109/TMTT.2017.2752170 Awny A, Nagulapalli R, Micusik D, Hoffmann J, Fischer G, Kissinger D, Ulusoy AC. 23.5 A dual 64Gbaud 10kΩ 5% THD linear differential transimpedance amplifier with automatic gain control in 0.13µm BiCMOS technology for optical fiber coherent receivers. In: 2016 IEEE International Solid-State Circuits Conference (ISSCC). 2016. http://doi.org/10.1109/isscc.2016.7418079. Awny, 2015, A 40 Gb/s Monolithically Integrated Linear Photonic Receiver in a 0.25 μm BiCMOS SiGe: C Technology, IEEE Microwave Wireless Compon Lett, 25, 469, 10.1109/LMWC.2015.2430615 Desai K, Nagulapalli R, Krishna V, Palwai R, Venkatesan PK, Khawshe V. High Speed Clock and Data Recovery Circuit with Novel Jitter Reduction Technique. In: 2010 23rd International Conference on VLSI Design. 2010. http://doi.org/10.1109/vlsi.design.2010.104. Nagulapalli R, Hayatleh K, Barker S, Zourob, S, Venkatareddy A. A novel current reference in 45nm cmos technology. 2017 Second International Conference on Electrical, Computer and Communication Technologies (ICECCT). 2017. http://doi.org/10.1109/icecct.2017.8117953. Nagulapalli R, Hayatleh K, Barker S, Zourob S, Venkatareddy, A. A CMOS technology friendly wider bandwidth opamp frequency compensation. 2017 Second International Conference on Electrical, Computer and Communication Technologies (ICECCT). 2017. http://doi.org/10.1109/icecct.2017.8117957. Nagulapalli, 2018, An OTA gain enhancement technique for low power biomedical applications, Analog Integr Circ S, 95, 387, 10.1007/s10470-018-1148-y