Optimization of additive compositions for anode in Ni-MH secondary battery using the response surface method

Metals and Materials International - Tập 15 - Trang 421-425 - 2009
Dong-Cheol Yang1, In-Su Jang1, Min-Ho Jang1, Choong-Nyeon Park1, Chan-Jin Park1, Jeon Choi2
1Department of Materials Science and Engineering, Chonnam National University, Gwangju, Korea
2Department of Advanced Materials Engineering, Hanlyo University, Cheonnam, Korea

Tóm tắt

We optimized the composition of additives for the anode in a Ni-MH battery using the response surface method (RSM) to improve the electrode discharge capacities. When the amount of additives was small, the discharge characteristics of the electrode were degraded by charge-discharge cycling due to the low binding strength among the alloy powders and the resultant separation of the powder from the electrode surface. In contrast, the addition of a large amount of the additives increased the electrical impedance of the electrode. Through a response optimization process, we found an optimum composition range of additives to exhibit the greatest discharge capacity of the electrode.

Tài liệu tham khảo

M. B. Moussa, M. Abdellaoui, H. Mathlouthi, J. Lamloumi, and A. P. Guégan, J. Alloy. Compd. 458, 410 (2008). J. Y. Kim, C. N. Park, J. S. Shim, C. J. Park, J. Choi, and H. Noh, J. Power Sources 180, 648 (2008). N. Drenchev, T. Spassov, and S. Bliznakov, J. Alloy. Compd. 450, 288 (2008). P. Zhang, X. Wei, Y. Liu, J. Zhu, and G. Yu, Int. J. Hydrogen Energ. 33, 1304 (2008). J. B. Wu, J. P. Tu, T. A. Han, Z. Yu, W. K. Zhang, and H. Huang, J. Alloy. Compd. 449, 349 (2008). S. Bliznakov, E. Lefterova, N. Dimitrov, K. Petrov, and A. Popov, J. Power Sources 176, 381 (2008). S. Rousselot, M. P. Bichat, D. Guay, and L. Roué, J. Power Sources 175, 621 (2008). Y. Liu, H. Pan, M. Gao, H. Miao, Y. Lei, and Q. Wang, Int. J. Hydrogen Energ. 33, 124 (2008). H. L. Chu, S. J. Qiu, L. X. Sun, Y. Zhang, F. Xu, M. Zhu, and W. Y. Hu, Int. J. Hydrogen Energ. 33, 755 (2008). C. P. Hou, M. S. Zhao, Y. Q. Qiao, J. Li, L. Huang, Y. Z. Wang, X. Liu, S. Z. Liu, and M. Yue, Int. J. Hydrogen Energ. 32, 4209 (2007). J. Y. Park, C. N. Park, C. J. Park, and J. Choi, Int. J. Hydrogen Energ. 32, 4215 (2007). T. Ozaki, M. Kanemoto, T. Kakeya, Y. Kitano, M. Kuzuhara, M. Watada, S. Tanase, and T. Sakai, J. Alloy. Compd. 446–447, 620 (2007). Y. Qiao, M. Zhao, X. Zhu, and G. Cao, Int. J. Hydrogen Energ. 32, 3427 (2007). B. Drenchev and T. Spassov, J. Alloy. Compd. 441, 197 (2007). H. L. Chu, S. J. Qiu, L. X. Sun, Y. Zhang, F. Xu, T. Jiang, W. X. Li, M. Zhu, and W. Y. Hu, Electrochim. Acta 52, 6700 (2007). M. Raju, K. Manimaran, M. V. Ananth, and N. G. Renganathan, Int. J. Hydrogen Energ. 32, 1721 (2007). S. F. Santos, J. F. R. de Castro, T. T. Ishikawa, and E. A. Ticianelli, J. Alloy. Compd. 434–435, 756 (2007). F. L. Zhang, Y. C. Luo, J. P. Chen, R. X. Yan, and J. H. Chen, J. Alloy. Compd. 430, 302 (2007). S. Shi, C. Ouyang, and M. Lei, J. Power Sources 164, 911 (2007). Y. Wang, Z. W. Lu, Y. L. Wang, T. Y. Yan, J. Q. Qu, X. P. Gao, and P. W. Shen, J. Alloy. Compd. 421, 236 (2006). E. Jankowska, M. Makowiecka, and M. Jurczyk, J. Alloy. Compd. 404–406, 691 (2005). F. Feng and D. O. Northwood, Int. J. Hydrogen Energ. 30, 1367 (2005). H. S. Kim, J. M. Kim, T. W. Kim, I. H. Oh, J. Choi, and C. N. Park, Met. Mater. Int. 14, 497 (2008). S. Zhong, A. Howes, G. X. Wang, D. H. Bradhurst, C. Wang, S. X. Dou, and H. K. Liu, J. Alloy. Compd. 330–332, 760 (2002). D. Yan and W. Cui, J. Alloy. Compd. 293–295, 780 (1999). R. H. Myers and D. C. Montgomery, Response Surface Methodology, 2nd ed., Willey Int. (2002). C. Deng, P. Shi, and S. Zhang, Mater. Chem. Phys. 98, 514 (2006). W. Chen, J. Power Sources 90, 201 (2000). F. Maurel, P. Leblanc, B. Knosp, and M. Backhaus-Ricoult, J. Alloy. Compd. 309, 88 (2000).