Studies on the effect of composition and pre-heating on microstructure and mechanical properties of direct laser clad titanium aluminide

Optics and Lasers in Engineering - Tập 131 - Trang 106041 - 2020
Andreas Weisheit1, Silja-Katharina Rittinghaus2, Anupama Dutta3, J. Dutta Majumdar3
1Fraunhofer-Institut für Lasertechnik ILT, Steinbachstraße 15, D-52074 Aachen, Germany
2Lehrstuhl für Lasertechnik LLT RWTH Aachen University, Steinbachstraße 15, D-52074 Aachen, Germany
3Dept. of Metal. & Maters. Eng., I. I. T. Kharagpur, W.B., 721302, India

Tài liệu tham khảo

Appel, 2000, Recent progress on development of gamma titanium aluminide alloys, Adv. Eng. Mater., 2, 699, 10.1002/1527-2648(200011)2:11<699::AID-ADEM699>3.0.CO;2-J Kestler, 2002, Herstellung, Verarbeitung und Anwendung von γ(TiAl)-Basislegierungen, 269 Lamirand, 2003, Effects of added interstitial elements in ternary Ti–Al–Cr and quartenary Ti–Al–Cr–Nb, 97 Ramanujan, 2000, Phase transformations in γ based titanium aluminides, Int.Mater.Rev., 45, 217, 10.1179/095066000101528377 Chan, 1992, Influence of microstructure on crack-tip micromechanics and fracture behaviors of a two-phase TiAl alloy, Metall. Trans. A, 23A, 1663, 10.1007/BF02804362 Aguilar, 2010, Qualification of an investment casting process for production of titanium aluminide components for aerospace and automotive applications, Mater. Sci. Forum, 638-642, 1275, 10.4028/www.scientific.net/MSF.638-642.1275 Cárcel, 2014, Laser cladding of TiAl intermetallic alloy on Ti6Al4V-Process optimization and properties, Phys. Procedia, 56, 284, 10.1016/j.phpro.2014.08.173 Ocylok, 2011, Increased wear and oxidation resistance of titanium aluminide alloys by laser cladding, Adv. Mater. Res., 278, 515, 10.4028/www.scientific.net/AMR.278.515 Dutta Majumdar, 2011, Laser material processing, Int. Mate. Rev., 56, 341, 10.1179/1743280411Y.0000000003 Dutta Majumdar, 2013, 516 Kelbassa, 2006, Laser metal deposition of TiAl alloys Vilaro, 2010, Direct fabrication of a Ti-47Al-2Cr-2Nb alloy by selective laser melting and direct metal deposition processes, Adv. Mater. Res., 89-91, 586, 10.4028/www.scientific.net/AMR.89-91.586 Srivastavaa, 2001, The effect of process parameters and heat treatment on the microstructure of direct laser fabricated TiAl alloy samples, Intermetallics, 9, 1003, 10.1016/S0966-9795(01)00063-2 Qu, 2007, Microstructure and mechanical properties of laser melting deposited γ-TiAl intermetallic alloys, Mater. Sci. Eng., 466, 187, 10.1016/j.msea.2007.02.073 Qu, 2010, The effects of heat treatment on the microstructure and mechanical property of laser melting deposition γ-TiAl intermetallic alloys, Mater. Des., 31, 2201, 10.1016/j.matdes.2009.10.045 Qu, 2010, Microstructure and mechanical property of laser melting deposition (LMD) Ti/TiAl structural gradient material, Mater. Des., 31, 574, 10.1016/j.matdes.2009.07.004 Brückner, 2015, Laser additive manufacturing with. crack-sensitive materials-Temperature monitoring system for defect-free material build-up, Laser Technik J., 2, 28, 10.1002/latj.201500015 Rittinghaus, 2016, Laser metal deposition of titanium aluminides – a future repair technology for jet engine blades Oliver, 1992, An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments, J. Mater. Res., 7, 1564, 10.1557/JMR.1992.1564 Nobuki, 1991, Influence of alloy composition on hot deformation properties of Ti–Al binary intermetallics, ISIJ Int., 31, 931, 10.2355/isijinternational.31.931 Jing-wen, 2002, Recent developments in engineering γ-TiAl intennetallics, Trans. Nonferrous Met. Soc. China, 12, 818 Cormier, 2007, Freeform fabrication of titanium aluminide via electron beam melting using prealloyed and blended powders, Res. Lett. Mater. Sci., 2007, 34737, 10.1155/2007/34737 Doubenskaia, 2017, Comprehensive analysis of selective laser melting of TiAl powder Clemens, 2008, In and ex situ investigations of the β-phase in a Nb and Mo containing γ-TiAl based alloy, Intermetallics, 16, 827, 10.1016/j.intermet.2008.03.008 Schloffer, 2012, Microstructure development and hardness of a powder metallurgical multi phase γ-TiAl based alloy, Intermetallics, 22, 231, 10.1016/j.intermet.2011.11.015 Hu, 2006, The effect of boron and alpha grain size on the massive transformation in Ti–46Al–8Nb–xB alloys, Intermetallics, 14, 818, 10.1016/j.intermet.2005.12.003 Ma, 2015 Hu, 2007, On the massive phase transformation regime in TiAl alloys: the alloying effect on massive/lamellar competition, Intermetallics, 15, 327, 10.1016/j.intermet.2006.07.007 Cao, 2008, Fracture behaviour of a TiAl alloy under various loading modes, Eng. Fract. Mech., 75, 4343, 10.1016/j.engfracmech.2008.01.013 Lu, 2000, The fracture mechanism of a fully lamellar γ-TiAl alloy through in-situ SEM observation, Intermetallics, 8, 1443, 10.1016/S0966-9795(00)00094-7 Xiao, 2009, Microstructure and mechanical properties of TiAl alloy prepared by spark plasma sintering, Trans. Nonferrous Met. Soc. China, 19, 1423, 10.1016/S1003-6326(09)60044-3 Kim, 2003, High-Temperature deformation behavior of a gamma TiAl alloy—microstructural evolution and mechanisms, Metallurgical and Materials Transactions A, 34, 2165, 10.1007/s11661-003-0280-0 Shazly, 2004, Mechanical behavior of gamma-met PX under uniaxial loading at elevated temperatures and high strain rates, Int. J. Solids Struct., 41, 6485, 10.1016/j.ijsolstr.2004.05.014 Chen, 2005, Fracture behavior of precracked specimens of a TiAl alloy, Mater. Sci. Tech., 21, 507, 10.1179/174328405X43018 Flemmings, 1974, 31 Kothary, 2007, Microstructure and mechanical properties of consolidated gamma titanium aluminides, Powder Metall., 50, 21, 10.1179/174329007X186471 Husni, 2013, The effects of Cr and Mo on the microstructure and mechanical properties of as-cast TiAl alloys, J. Eng. Technol. Sci., 45, 294, 10.5614/j.eng.technol.sci.2013.45.3.6 Wu, 2006, Review of alloy and process development of TiAl alloys, Intermetallics, 14, 1114, 10.1016/j.intermet.2005.10.019 Kim, 1989, Intermetallic alloys based on gamma titanium aluminide, JOM, 41, 24, 10.1007/BF03220267