Studies on the effect of composition and pre-heating on microstructure and mechanical properties of direct laser clad titanium aluminide
Tài liệu tham khảo
Appel, 2000, Recent progress on development of gamma titanium aluminide alloys, Adv. Eng. Mater., 2, 699, 10.1002/1527-2648(200011)2:11<699::AID-ADEM699>3.0.CO;2-J
Kestler, 2002, Herstellung, Verarbeitung und Anwendung von γ(TiAl)-Basislegierungen, 269
Lamirand, 2003, Effects of added interstitial elements in ternary Ti–Al–Cr and quartenary Ti–Al–Cr–Nb, 97
Ramanujan, 2000, Phase transformations in γ based titanium aluminides, Int.Mater.Rev., 45, 217, 10.1179/095066000101528377
Chan, 1992, Influence of microstructure on crack-tip micromechanics and fracture behaviors of a two-phase TiAl alloy, Metall. Trans. A, 23A, 1663, 10.1007/BF02804362
Aguilar, 2010, Qualification of an investment casting process for production of titanium aluminide components for aerospace and automotive applications, Mater. Sci. Forum, 638-642, 1275, 10.4028/www.scientific.net/MSF.638-642.1275
Cárcel, 2014, Laser cladding of TiAl intermetallic alloy on Ti6Al4V-Process optimization and properties, Phys. Procedia, 56, 284, 10.1016/j.phpro.2014.08.173
Ocylok, 2011, Increased wear and oxidation resistance of titanium aluminide alloys by laser cladding, Adv. Mater. Res., 278, 515, 10.4028/www.scientific.net/AMR.278.515
Dutta Majumdar, 2011, Laser material processing, Int. Mate. Rev., 56, 341, 10.1179/1743280411Y.0000000003
Dutta Majumdar, 2013, 516
Kelbassa, 2006, Laser metal deposition of TiAl alloys
Vilaro, 2010, Direct fabrication of a Ti-47Al-2Cr-2Nb alloy by selective laser melting and direct metal deposition processes, Adv. Mater. Res., 89-91, 586, 10.4028/www.scientific.net/AMR.89-91.586
Srivastavaa, 2001, The effect of process parameters and heat treatment on the microstructure of direct laser fabricated TiAl alloy samples, Intermetallics, 9, 1003, 10.1016/S0966-9795(01)00063-2
Qu, 2007, Microstructure and mechanical properties of laser melting deposited γ-TiAl intermetallic alloys, Mater. Sci. Eng., 466, 187, 10.1016/j.msea.2007.02.073
Qu, 2010, The effects of heat treatment on the microstructure and mechanical property of laser melting deposition γ-TiAl intermetallic alloys, Mater. Des., 31, 2201, 10.1016/j.matdes.2009.10.045
Qu, 2010, Microstructure and mechanical property of laser melting deposition (LMD) Ti/TiAl structural gradient material, Mater. Des., 31, 574, 10.1016/j.matdes.2009.07.004
Brückner, 2015, Laser additive manufacturing with. crack-sensitive materials-Temperature monitoring system for defect-free material build-up, Laser Technik J., 2, 28, 10.1002/latj.201500015
Rittinghaus, 2016, Laser metal deposition of titanium aluminides – a future repair technology for jet engine blades
Oliver, 1992, An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments, J. Mater. Res., 7, 1564, 10.1557/JMR.1992.1564
Nobuki, 1991, Influence of alloy composition on hot deformation properties of Ti–Al binary intermetallics, ISIJ Int., 31, 931, 10.2355/isijinternational.31.931
Jing-wen, 2002, Recent developments in engineering γ-TiAl intennetallics, Trans. Nonferrous Met. Soc. China, 12, 818
Cormier, 2007, Freeform fabrication of titanium aluminide via electron beam melting using prealloyed and blended powders, Res. Lett. Mater. Sci., 2007, 34737, 10.1155/2007/34737
Doubenskaia, 2017, Comprehensive analysis of selective laser melting of TiAl powder
Clemens, 2008, In and ex situ investigations of the β-phase in a Nb and Mo containing γ-TiAl based alloy, Intermetallics, 16, 827, 10.1016/j.intermet.2008.03.008
Schloffer, 2012, Microstructure development and hardness of a powder metallurgical multi phase γ-TiAl based alloy, Intermetallics, 22, 231, 10.1016/j.intermet.2011.11.015
Hu, 2006, The effect of boron and alpha grain size on the massive transformation in Ti–46Al–8Nb–xB alloys, Intermetallics, 14, 818, 10.1016/j.intermet.2005.12.003
Ma, 2015
Hu, 2007, On the massive phase transformation regime in TiAl alloys: the alloying effect on massive/lamellar competition, Intermetallics, 15, 327, 10.1016/j.intermet.2006.07.007
Cao, 2008, Fracture behaviour of a TiAl alloy under various loading modes, Eng. Fract. Mech., 75, 4343, 10.1016/j.engfracmech.2008.01.013
Lu, 2000, The fracture mechanism of a fully lamellar γ-TiAl alloy through in-situ SEM observation, Intermetallics, 8, 1443, 10.1016/S0966-9795(00)00094-7
Xiao, 2009, Microstructure and mechanical properties of TiAl alloy prepared by spark plasma sintering, Trans. Nonferrous Met. Soc. China, 19, 1423, 10.1016/S1003-6326(09)60044-3
Kim, 2003, High-Temperature deformation behavior of a gamma TiAl alloy—microstructural evolution and mechanisms, Metallurgical and Materials Transactions A, 34, 2165, 10.1007/s11661-003-0280-0
Shazly, 2004, Mechanical behavior of gamma-met PX under uniaxial loading at elevated temperatures and high strain rates, Int. J. Solids Struct., 41, 6485, 10.1016/j.ijsolstr.2004.05.014
Chen, 2005, Fracture behavior of precracked specimens of a TiAl alloy, Mater. Sci. Tech., 21, 507, 10.1179/174328405X43018
Flemmings, 1974, 31
Kothary, 2007, Microstructure and mechanical properties of consolidated gamma titanium aluminides, Powder Metall., 50, 21, 10.1179/174329007X186471
Husni, 2013, The effects of Cr and Mo on the microstructure and mechanical properties of as-cast TiAl alloys, J. Eng. Technol. Sci., 45, 294, 10.5614/j.eng.technol.sci.2013.45.3.6
Wu, 2006, Review of alloy and process development of TiAl alloys, Intermetallics, 14, 1114, 10.1016/j.intermet.2005.10.019
Kim, 1989, Intermetallic alloys based on gamma titanium aluminide, JOM, 41, 24, 10.1007/BF03220267