A numerical study of natural convection in an inclined square enclosure with an elliptic cylinder using variational multiscale element free Galerkin method

International Journal of Heat and Mass Transfer - Tập 99 - Trang 721-737 - 2016
Ping Zhang1, Xiaohua Zhang1, Jiheng Deng1, Laizhong Song1
1College of Science, China Three Gorges University, Yichang 443002, China

Tài liệu tham khảo

Kim, 2008, A numerical study of natural convection in a square enclosure with a circular cylinder at different vertical locations, Int. J. Heat Mass Transfer, 51, 1888, 10.1016/j.ijheatmasstransfer.2007.06.033 Park, 2014, Natural convection in a square enclosure with two inner circular cylinders positioned at different vertical locations, Int. J. Heat Mass Transfer, 77, 501, 10.1016/j.ijheatmasstransfer.2014.05.041 Lee, 2010, Natural convection in a square enclosure with a circular cylinder at different horizontal and diagonal locations, Int. J. Heat Mass Transfer, 53, 5905, 10.1016/j.ijheatmasstransfer.2010.07.043 Park, 2013, A numerical study on natural convection in an inclined square enclosure with a circular cylinder, Int. J. Heat Mass Transfer, 66, 295, 10.1016/j.ijheatmasstransfer.2013.07.029 Bararnia, 2011, Lattice Boltzmann simulation of natural convection around a horizontal elliptic cylinder inside a square enclosure, Int. Commun. Heat Mass Transfer, 38, 1436, 10.1016/j.icheatmasstransfer.2011.07.012 Mehrizi, 2013, Lattice Boltzmann simulation of natural convection heat transfer in an elliptical–triangular annulus, Int. Commun. Heat mass Transfer, 48, 164, 10.1016/j.icheatmasstransfer.2013.08.009 Ghasemi, 2012, Natural convection between a circular enclosure and an elliptic cylinder using control volume based finite element method, Int. Commun. Heat mass Transfer, 39, 1035, 10.1016/j.icheatmasstransfer.2012.06.016 Park, 2013, Study on natural convection in a cold square enclosure with a pair of hot horizontal cylinders positioned at different vertical locations, Int. J. Heat Mass Transfer, 65, 696, 10.1016/j.ijheatmasstransfer.2013.06.059 Belytschko, 1996, Meshless method: an overview and recent developments, Comput. Methods Appl. Mech. Eng., 139, 3, 10.1016/S0045-7825(96)01078-X Vinh, 2008, Meshless methods: a review and computer implementation aspects, Math. Comput. Simul., 79, 763, 10.1016/j.matcom.2008.01.003 Liu, 2005 Liu, 2002 Atluri, 2002 Huerta, 2004, Pseudo-divergence-free element free Galerkin method for incompressible fluid flow, Comput. Methods Appl. Mech. Eng., 193, 1119, 10.1016/j.cma.2003.12.010 Fries, 2006, A stabilized and coupled meshfree/meshbased method for the incompressible Navier–Stokes equations-Part I: Stabilization, Comput. Methods Appl. Mech. Eng., 195, 6205, 10.1016/j.cma.2005.12.002 Fries, 2006, A stabilized and coupled meshfree/meshbased method for the incompressible Navier–Stokes equations-Part II: Coupling, Comput. Methods Appl. Mech. Eng., 195, 6191, 10.1016/j.cma.2005.12.003 Lin, 2001, The meshless local Petrov–Galerkin (MLPG) method for solving incompressible Navier–Stokes equations, Comput. Model. Eng. Sci., 2 Duan, 2007, A meshless PSPG formulation for the incompressible Stokes flow, Chinese J. Comput. Mech., 24, 192 Zhang, 2004, Least-squares meshfree method for incompressible Navier–Stokes problems, Int. J. Numer. Methods Fluids, 46, 263, 10.1002/fld.758 Xuan, 2008, Simulation of Stokes flow over microelectrodes with least-squares meshfree method, Simul. Modell. Pract. Theory, 16, 294, 10.1016/j.simpat.2007.11.012 Shamekhi, 2008, On the use of characteristic-based split meshfree method for solving flow problems, Int. J. Numer. Methods Fluids, 56, 1885, 10.1002/fld.1529 Najafi, 2013, Extending MLPG primitive variable-based method for implementation in fluid flow and natural, forced and mixed convection heat transfer, Eng. Anal. Boundary Elem., 37, 1285, 10.1016/j.enganabound.2013.06.005 Li, 2006, Meshfree iterative stabilized Taylor–Galerkin and characteristic-based split (CBS) algorithms for incompressible N–S equations, Comput. Methods Appl. Mech. Eng., 195, 6125, 10.1016/j.cma.2005.12.011 Oñate, 1996, A finite point method in computational mechanics. Applications to convective transport and fluid flow, Int. J. Numer. Methods Eng., 39, 3839, 10.1002/(SICI)1097-0207(19961130)39:22<3839::AID-NME27>3.0.CO;2-R Wu, 2003, A meshfree formulation of local radial point interpolation method (LRPIM) for incompressible flow simulation, Comput. Mech., 30, 355, 10.1007/s00466-003-0411-x Zhang, 2008, On a multi-scale element-free Galerkin method for the Stokes problem, Appl. Math. Comput., 203, 745 Zhang, 2011, Variational multiscale element free Galerkin method for the water wave problems, J. Comput. Phys., 230, 5045, 10.1016/j.jcp.2011.03.026 Zhang, 2013, The variational multiscale element free Galerkin method for MHD flows at high Hartmann numbers, Comput. Phys. Commun., 184, 1106, 10.1016/j.cpc.2012.12.002 Zhang, 2015, Meshless modeling of natural convection problems in non-rectangular cavity using the variational multiscale element free Galerkin method, Eng. Anal. Boundary Elem., 61, 287, 10.1016/j.enganabound.2015.08.005 Hughes, 1998, The variational multiscale method-a paradigm for computational mechanics, Comput. Methods Appl. Mech. Eng., 166, 3, 10.1016/S0045-7825(98)00079-6 Masud, 2006, A multiscale finite element method for the incompressible Navier–Stokes equations, Comput. Methods Appl. Mech. Eng., 195, 750, 10.1016/j.cma.2005.05.048