An accuracy assessment of the CALIOP/CALIPSO version 2/version 3 daytime aerosol extinction product based on a detailed multi-sensor, multi-platform case study

Copernicus GmbH - Tập 11 Số 8 - Trang 3981-4000
Meloë Kacenelenbogen1, Mark Vaughan2, J. Redemann3, R. M. Hoff4, Raymond R. Rogers2, R. A. Ferrare2, Philip B. Russell5, C. A. Hostetler2, Johnathan W. Hair2, B. N. Holben6
1ORAU/ NASA Ames Research Center, Moffett Field, CA, USA
2NASA Langley Research Center, Hampton, VA, USA
3Bay Area Environmental Research Institute, Sonoma, CA, USA
4Joint Center for Earth Systems Technology (JCET)/Goddard Earth Science and Technology Center (GEST), University of Baltimore County, MA, USA
5NASA — Ames Research Center, Moffett Field, CA, USA
6NASA Goddard Space Flight Center Greenbelt MA USA

Tóm tắt

Abstract. The Cloud Aerosol LIdar with Orthogonal Polarization (CALIOP), on board the CALIPSO platform, has measured profiles of total attenuated backscatter coefficient (level 1 products) since June 2006. CALIOP's level 2 products, such as the aerosol backscatter and extinction coefficient profiles, are retrieved using a complex succession of automated algorithms. The goal of this study is to help identify potential shortcomings in the CALIOP version 2 level 2 aerosol extinction product and to illustrate some of the motivation for the changes that have been introduced in the next version of CALIOP data (version 3, released in June 2010). To help illustrate the potential factors contributing to the uncertainty of the CALIOP aerosol extinction retrieval, we focus on a one-day, multi-instrument, multiplatform comparison study during the CALIPSO and Twilight Zone (CATZ) validation campaign on 4 August 2007. On that day, we observe a consistency in the Aerosol Optical Depth (AOD) values recorded by four different instruments (i.e. space-borne MODerate Imaging Spectroradiometer, MODIS: 0.67 and POLarization and Directionality of Earth's Reflectances, POLDER: 0.58, airborne High Spectral Resolution Lidar, HSRL: 0.52 and ground-based AErosol RObotic NETwork, AERONET: 0.48 to 0.73) while CALIOP AOD is a factor of two lower (0.32 at 532 nm). This case study illustrates the following potential sources of uncertainty in the CALIOP AOD: (i) CALIOP's low signal-to-noise ratio (SNR) leading to the misclassification and/or lack of aerosol layer identification, especially close to the Earth's surface; (ii) the cloud contamination of CALIOP version 2 aerosol backscatter and extinction profiles; (iii) potentially erroneous assumptions of the aerosol extinction-to-backscatter ratio (Sa) used in CALIOP's extinction retrievals; and (iv) calibration coefficient biases in the CALIOP daytime attenuated backscatter coefficient profiles. The use of version 3 CALIOP extinction retrieval for our case study seems to partially fix factor (i) although the aerosol retrieved by CALIOP is still somewhat lower than the profile measured by HSRL; the cloud contamination (ii) appears to be corrected; no particular change is apparent in the observation-based CALIOP Sa value (iii). Our case study also showed very little difference in version 2 and version 3 CALIOP attenuated backscatter coefficient profiles, illustrating a minor change in the calibration scheme (iv).

Từ khóa


Tài liệu tham khảo

Anderson T. L., Charlson R. J., Winker D. M., Ogren J. A., and Holmén, K.: Mesoscale Variations of Tropospheric Aerosols, J. Atmos. Sci., 60(1), 119–136, 2003.

CALIPSO Version 2 Data Quality Statements, available online at: http://eosweb.larc.nasa.gov/PRODOCS/calipso/Quality_Summaries/CALIOP_L2ProfileProducts_2.01.html, 2009.

Cattrall, C., Reagan, J., Thome, K., and Dubovik, O.: Variability of aerosol and spectral lidar and backscatter and extinction ratios of key aerosol types derived from selected Aerosol Robotic Network locations, J. Geophys. Res., 110, D10S11, https://doi.org/10.1029/2004JD005124, 2005.

Deuzé, J.-L., Bréon, F.-M., Devaux, C., Goloub, P., Herman, M., Lafrance, B., Maignan, F., Marchand, A., Nadal, F., Perry, G., and Tanré, D.: Remote sensing of aerosols over land surfaces from POLDER-ADEOS-1 polarized measurements, J. Geophys. Res., 106, 4913–4926, 2001.

Draxler, R. R. and Rolph, G. D.: HYSPLIT (HYbrid Single-Particle Lagrangian Integrated Trajectory) Model access via NOAA ARL READY Website: http://ready.arl.noaa.gov/HYSPLIT.php, NOAA Air Resources Laboratory, Silver Spring, MD, USA, 2010.

Dubovik, O. and M. D. King, A flexible inversion algorithm for retrieval of aerosol optical properties from Sun and sky radiance measurements, J. Geophys. Res., 105, 20673–20696, 2000a.

Dubovik O., Smirnov A., Holben B. N., King M. D., Kaufman Y. J., Eck T. F., and Slutsker I.: Accuracy assessments of aerosol optical properties retrieved from Aerosol Robotic Network (AERONET) Sun and Sky radiance measurements, J. Geophys. Res., 105(D8), 9791–9806, 2000b.

Eck, T. F., Holben, B. N., Reid, J. S., Dubovik, O., Smirnov, A., O'Neill, N. T., Slutsker, I., and Kinne, S.: Wavelength dependence of the optical depth of biomass burning, urban and desert dust aerosols, J. Geophys. Res., 104, 3133–31350, 1999.

Gonzi, S. and Palmer, P. I.: Vertical transport of surface fire emissions observed from space, J. Geophys. Res., 115, D02306, https://doi.org/10.1029/2009JD012053, 2010.

Hair, J. W., Caldwell, L. M., Krueger, D. A., and She, C. Y.: High-spectral-resolution lidar with iodine-vapor filters: measurement of atmospheric-state and aerosol profiles, Appl. Optics, 40, 5280–5294, 2001.

Hair, J. W., Hostetler, C. A., Cook, A. L., Harper, D. B., Ferrare, R. A., Mack, T. L., Welch, W., Isquierdo, L. R., and Hovis, F. E.: Airborne high spectral resolution lidar for profiling aerosol optical properties, Appl. Optics, 47, 6734–6752, https://doi.org/10.1364/AO.47.006734, 2008.

Holben, B. N., Eck, T. F., Slutsker, I., Tanré, D., Buis, J. P., Setzer, A., Vermote, E., Reagan, J. A., Kaufman, Y. J., Nakajima, T., Lavenu, F., Jankowiak, I., and Smirnov, A.: AERONET–A federated instrument network and data archive for aerosol characterization, Remote Sens. Environ., 66, 1–16, 1998.

Hostetler, C. A., Liu, Z., Reagan, J., Vaughan, M., Winker, D., Osborn, M., Hunt, W. H., Powell, K. A., and Trepte, C.: CALIOP Algorithm Theoretical Basis Document, Calibration and level 1 Data Products, PC-SCI-201, NASA Langley Research Center, Hampton, VA 23681, USA, available online at: http://www-calipso.larc.nasa.gov/resources/project_documentation.php, 2006.

Jones, T. A. and Christopher, S. A.: Statistical properties of aerosol-cloud-precipitation interactions in South America, Atmos. Chem. Phys., 10, 2287–2305, https://doi.org/10.5194/acp-10-2287-2010, 2010

Kaufman Y. J. and Tanré D.: Algorithm for remote sensing of tropospheric aerosol from MODIS, Product ID: MOD04, 85 pp., 1998.

Kendall M. G.: A Course in Multivariate Analysis, London, Charles W. Griffin & Co., Ltd., 13–19, 1957.

Kim S. W., S. Berthier, J.-C. Raut, P. Chazette, F. Dulac, and S.-C. Yoon: Validation of aerosol and cloud layer structures from the space-borne lidar CALIOP using a ground-based lidar in Seoul, Korea, Atmos. Chem. Phys., 8, 3705–3720, https://doi.org/10.5194/acp-8-3705-2008, 2008.

Kittaka, C., Winker, D., Omar, A., Liu, Z., Vaughan, M., and Trepte, C.: Global Aerosol Distributions Derived From the CALIPSO Observations, Eos Trans. AGU, 89(53), Fall Meet. Suppl., Abstract A41A-0078, 2008.

Kuhlmann, J. and Quaas, J.: How can aerosols affect the Asian summer monsoon? Assessment during three consecutive pre-monsoon seasons from CALIPSO satellite data, Atmos. Chem. Phys., 10, 4673–4688, https://doi.org/10.5194/acp-10-4673-2010, 2010

Levy, R. C., Remer, L. A., Kleidman, R. G., Mattoo, S., Ichoku, C., Kahn, R., and Eck, T. F.: Global evaluation of the Collection 5 MODIS dark-target aerosol products over land, Atmos. Chem. Phys., 10, 10399–10420, https://doi.org/10.5194/acp-10-10399-2010, 2010.

Liu, Z., Winker D. M., Omar A. H., et al.: Effective lidar ratios of dense dust layers over North Africa derived from the CALIOP measurements, J. Quant. Spectrosc. Rad., https://doi.org/10.1016/j.jqsrt.2010.05.006, 2010.

Liu Z, Winker D., Omar A., Vaughan M., Trepte C., Hub Y., Powell K., Sun W., and Lin B.: Effective lidar ratios of dense dust layers over North Africa derived from the CALIOP measurements, J. Quant. Spectrosc. Rad., 112(2), 204–213,, https://doi.org/10.1016/j.jqsrt.2010.05.006, 2010.

Mamouri R. E., Amiridis, V., Papayannis, A., Giannakaki, E., Tsaknakis, G., and Balis, D. S.: Validation of CALIPSO space-borne-derived attenuated backscatter coefficient profiles using a ground-based lidar in Athens, Greece, Atmos. Meas. Tech., 2, 513–522, https://doi.org/10.5194/amt-2-513-2009, 2009.

McGill, M. J., Hlavka, D. L., Hart, W. D., Welton, E. J., and Campbell, J. R.: Airborne lidar measurements of aerosol optical properties during SAFARI-2000, J. Geophys. Res., 108(D13), 8493, https://doi.org/10.1029/2002JD002370, 2003.

McGill, M. J., Vaughan, M. A., Trepte, C. R., Hart, W. D., Hlavka, D. L., Winker, D. M., and Kuehn, R.: Airborne validation of spatial properties measured by the CALIPSO lidar, J. Geophys. Res., 112, D20201, https://doi.org/10.1029/2007JD008768, 2007.

McMillan, W. W., Pierce R. B., Sparling L. C., Osterman G., McCann K., Fischer M. L., Rappenglück B., Newsom R., Turner D., Kittaka C., Evans K., Biraud S., Lefer B., Andrews A., and Oltmans S.: An observational and modeling strategy to investigate the impact of remote sources on local air quality: A Houston, Texas, case study from the Second Texas Air Quality Study (TexAQS II), J. Geophys. Res., 115, D01301, http://dx.doi.org/10.1029/2009JD011973https://doi.org/10.1029/2009JD011973, 2010.

Mona L., Pappalardo, G., Amodeo, A., D'Amico, G., Madonna, F., Boselli, A., Giunta, A., Russo, F., and Cuomo, V.: One year of CNR-IMAA multi-wavelength Raman lidar measurements in coincidence with CALIPSO overpasses: Level 1 products comparison, Atmos. Chem. Phys., 9, 7213–7228, https://doi.org/10.5194/acp-9-7213-2009, 2009.

Omar, A., Winker, D., Kittaka, C., Vaughan, M., Liu, Z., Hu, Y., Trepte, C., Rogers, R., Ferrare, R., Kuehn, R., and Hostetler, C.: The CALIPSO Automated Aerosol Classification and Lidar Ratio Selection Algorithm, J. Atmos. Ocean. Tech., 26, 1994–2014, https://doi.org/10.1175/2009JTECHA1231.1, 2009.

Pappalardo, G., Wandinger, U., Mona, L., Wandinger, U., Mona, L., Hiebsch, A., Mattis, I., Amodeo, A., Ansmann, A., Seifert, P., Linné, H., Apituley, A., Arboledas, L. A., Balis, D., Chaikovsky, A., D'Amico, G., De Tomasi, F., Freudenthaler, V., Giannakaki, E., Giunta, A., Grigorov, I., Iarlori, M., Madonna, F., Mamouri, R., Nasti, L., Papayannis, A., Pietruczuk, A., Pujadas, M., Rizi, V., Rocadenbosch, F., Russo, F., Schnell, F., Spinelli, N., Wang, X., and Wiegner, M.: EARLINET correlative measurements for CALIPSO: First intercomparison results, J. Geophys. Res., 115, D00H19, https://doi.org/10.1029/2009JD012147, 2010.

Peyridieu, S., Chédin, A., Tanré, D., Capelle, V., Pierangelo, C., Lamquin, N., and Armante, R.: Saharan dust infrared optical depth and altitude retrieved from AIRS: a focus over North Atlantic – comparison to MODIS and CALIPSO, Atmos. Chem. Phys., 10, 1953–1967, https://doi.org/10.5194/acp-10-1953-2010, 2010.

Piironen, P. and Eloranta, E. W.: Demonstration of a high-spectral-resolution lidar based on an iodine absorption filter, Opt. Lett., 19, 234–236, 1994.

Powell, K. A., Hostetler, C. A., Liu, Z., Vaughan, M. A., Kuehn, R. E., Hunt, W. H., Lee, K., Trepte, C. R., Rogers, R. R., Young, S. A., and Winker, D. M.: CALIPSO Lidar Calibration Algorithms: Part I – Nighttime 532 nm Parallel Channel and 532 nm Perpendicular Channel, J. Atmos. Ocean. Tech., 26, 2015–2033, https://doi.org/10.1175/2009-JTECHA1242.1, 2009.

Powell, K. A., Vaughan, M. A., Rogers, R. R., Kuehn, R. E., Hunt, W. H., Lee, K.-P., and Murray, T. D.: The CALIOP 532-nm Channel Daytime Calibration: Version 3 Algorithm, Proceedings of the 25th International Laser Radar Conference, 1367–1370, ISBN 978-5-94458-109-9, 2010.

Redemann, J., Zhang Q., Schmid B., Russell P. B., Livingston J. M., Jonsson H., and Remer, L. A.: Assessment of MODIS-derived visible and near-IR aerosol optical properties and their spatial variability in the presence of mineral dust, Geophys. Res. Lett., 33, L18814, https://doi.org/10.1029/2006GL026626, 2006.

Redemann, J., Vaughan, M., Shinozuka, Y., Zhang, Q., Russell, P., Livingston, J., and Remer, L.: The combined use of MODIS, CALIPSO and OMI level 2 aerosol products for calculating direct aerosol radiative effects, presentation at the combined CALIPSO-CloudSat Science Team meeting; available online at: http://cimss.ssec.wisc.edu/calipso/meetings/cloudsat_calipso_2009/Presentations/Thur/morning/Redemann_MODIS_CALIPSO_OMI.pdf, 2009.

Rogers, R. R., Hostetler, C. A., Hair, J. W., Ferrare, R. A., Liu, Z., Obland, M. D., Harper, D. B., Cook, A. L., Powell, K. A., Vaughan, M. A., and Winker, D. M.: Assessment of the CALIPSO Lidar 532 nm attenuated backscatter calibration using the NASA LaRC airborne High Spectral Resolution Lidar, Atmos. Chem. Phys., 11, 1295–1311, https://doi.org/10.5194/acp-11-1295-2011, 2011.

Rolph, G. D.: Real-time Environmental Applications and Display sYstem (READY) Website: http://ready.arl.noaa.gov, NOAA Air Resources Laboratory, Silver Spring, MD, USA, 2010.

Russell, P. B., Swissler, T. J., and McCormick, M. P.: Methodology for error analysis and simulation of lidar aerosol measurements, Appl. Optics, 18, 3783–3797, 1979.

Sekiyama T. T., T. Y. Tanaka, A. Shimizu, and T. Miyoshi: Data assimilation of CALIPSO aerosol observations, Atmos. Chem. Phys., 10, p 39–49, 2010.

Anu Rani Sharma, Shailesh Kumar Kharol, Badarinath, K. V. S., and Darshan Singh: Impact of agriculture crop residue burning on atmospheric aerosol loading – a study over Punjab State, India, Ann. Geophys., 28, 367–379, https://doi.org/10.5194/angeo-28-367-2010, 2010.

Shinozuka, Y., Redemann, J., Russell, P. B., Livingston, J. M., Clarke, A. D., Podolske, J. R.: Horizontal variability of aerosol optical properties observed during the ARCTAS airborne experiment, AGU, San Francisco, California, USA, 13–17 December 2010.

Smirnov, A., Holben, B. N., Kaufman, Y. J., Dubovik, O., Eck, T. F., Slutsker, I., Pietras, C., and Halthore, R.: Optical Properties of Atmospheric Aerosol in Maritime Environments, J. Atmos. Sci., 59, 501–523, 2002.

US Environmental Protection Agency, Science Algorithms of the EPA, Models-3 Community Multiscale Air Quality (CMAQ) Modeling System. EPA/600/R- 99/030, http://www.epa.gov/asmdnerl/CMAQ/CMAQscienceDoc.html, 1999.

Vaughan, M., Powell, K., Kuehn, R., Young, S., Winker, D., Hostetler, C., Hunt, W., Liu, Z., McGill, M., and Getzewich, B.: Fully Automated Detection of Cloud and Aerosol Layers in the CALIPSO Lidar Measurements, J. Atmos. Ocean. Tech., 26, 2034–2050, https://doi.org/10.1175/2009JTECHA1228.1, 2009.

Vaughan, M., Kuehn, R., Tackett, J., Rogers, R., Liu, Z., Omar, A., Getzewich, B., Powell, K., Hu, Y., Young, S., Avery, M., Winker, D., and Trepte, C.: "Strategies for Improved CALIPSO Aerosol Optical Depth Estimates", Proceedings of the 25th International Laser Radar Conference, 1340–1343, ISBN: 978-5-94458-109-9, 2010.

Vermeulen, A., Devaux C., and Herman, M.: Retrieval of the scattering and microphysical properties of the aerosols from ground-based optical measurements including polarization, I. Method, Appl. Optics, 39(33), 6207–6220, 2000.

Wandinger, U., Tesche, M., Seifert, P., Ansmann, A., Müller, D., and Althausen, D.: Size matters: Influence of multiple scattering on CALIPSO light extinction profiling in desert dust, Geophys. Res. Lett., 37, L10801, https://doi.org/10.1029/2010GL042815, 2010.

Winker, D. M., Pelon, J., and McCormick, M. P.: The CALIPSO mission: Space borne Lidar for observation of aerosols and clouds, Spie. Proc. Ser., 4893, 1–11, https://doi.org/10.1117/12.466539, 2003. Winker, D. M., Vaughan, M. A., Omar, A., Hu, Y., Powell, K. A., Liu, Z., Hunt, W. H., and Young, S. A.: Overview of the CALIPSO mission and CALIOP data processing algorithms, J. Atmos. Ocean. Tech., 26, 2310–2323, https://doi.org/10.1175/2009JTECHA1281.1, 2009.

Yost, C. R., Minnis, P., Sun-Mack, S., Nguyen, L., and Yi, Y.: Examination of CALIPSO cloud detection in broken cloud conditions using high resolution MODIS data, CloudSat Science Team Meeting, Seattle, WA, USA, 19 August, 2008.

Young S. A.: Analysis of lidar backscatter profiles in optically thin clouds, Appl. Optics, 34, 7019–7031, 1995.

Young, S. A. and Vaughan, M. A.: The retrieval of profiles of particulate extinction from Cloud Aerosol Lidar Infrared Pathfinder Satellite Observations (CALIPSO) data: Algorithm description, J. Atmos. Ocean. Tech., 26, 1105–1119, https://doi.org/10.1175/2008 JTECHA1221.1, 2009

Yu, H., Chin, M., Winker, D. M., Omar, A. H., Liu, Z., Kittaka, C., and Diehl, T.: Global view of aerosol vertical distributions from CALIPSO lidar measurements and GOCART simulations: Regional and seasonal variations, J. Geophys. Res., 115, D00H30, https://doi.org/10.1029/2009JD013364, 2010.