Nonlinear static and dynamic responses of graphene platelets reinforced composite beam with dielectric permittivity

Applied Mathematical Modelling - Tập 71 - Trang 298-315 - 2019
Yu Wang1, Chuang Feng1, Xinwei Wang2, Zhan Zhao1, Carlos Santiuste Romero3, Youheng Dong1, Jie Yang1
1School of Engineering, RMIT University, Bundoora, VIC 3083, Australia
2State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing, PR China
3Department of Continuum Mechanics and Structural Analysis, Universidad Carlos III de Madrid, Avda de la Universidad 30, 28911 Leganés, Spain

Tài liệu tham khảo

Chen, 2014, Poly(methyl methacrylate)-functionalized graphene/polyurethane dielectric elastomer composites with superior electric field induced strain, Mater. Lett., 128, 19, 10.1016/j.matlet.2014.04.075 Liu, 2015, High performance dielectric elastomers by partially reduced graphene oxide and disruption of hydrogen bonding of polyurethanes, Polymer, 56, 375, 10.1016/j.polymer.2014.11.012 Javey, 2002, High-kappa dielectrics for advanced carbon-nanotube transistors and logic gates, Nat. Mater., 1, 241, 10.1038/nmat769 Feng, 2011, Dynamic characteristics of a dielectric elastomer-based microbeam resonator with small vibration amplitude, J. Micromech. Microeng., 21, 1, 10.1088/0960-1317/21/9/095002 Jung, 2008, A self-sensing dielectric elastomer actuator, Sens. Actuat. A Phys., 143, 343, 10.1016/j.sna.2007.10.076 Wissler, 2005, Modeling and simulation of dielectric elastomer actuators, Smart Mater. Struct., 14, 1396, 10.1088/0964-1726/14/6/032 Feng, 2014, Dynamic analysis of a dielectric elastomer-based microbeam resonator with large vibration amplitude, Int. J. Nonlinear Mech., 65, 63, 10.1016/j.ijnonlinmec.2014.05.004 Selvi, 2014, Carbon black-polybenzoxazine nanocomposites for highKdielectric applications, Polym. Compos., 35, 2121, 10.1002/pc.22874 Calberg, 1999, Electrical and dielectric properties of carbon black filled co-continuous two-phase polymer blends, J. Phys. D Appl. Phys., 32, 1517, 10.1088/0022-3727/32/13/313 Gholami, 2017, Nonlinear resonant dynamics of geometrically imperfect higher-order shear deformable functionally graded carbon-nanotube reinforced composite beams, Compos. Struct., 174, 45, 10.1016/j.compstruct.2017.04.042 Wang, 2005, Carbon nanotube composites with high dielectric constant at low percolation threshold, Appl. Phys. Lett., 87 Gholami, 2018, Geometrically nonlinear resonance of higher-order shear deformable functionally graded carbon-nanotube-reinforced composite annular sector plates excited by harmonic transverse loading, Eur. Phys. J. Plus, 133 Ameli, 2014, Polypropylene/carbon nanotube nano/microcellular structures with high dielectric permittivity, low dielectric loss, and low percolation threshold, Carbon, 71, 206, 10.1016/j.carbon.2014.01.031 Gholami, 2018, Nonlinear bending of third-order shear deformable carbon nanotube/fiber/polymer multiscale laminated composite rectangular plates with different edge supports, Eur. Phys. J. Plus, 133, 56, 10.1140/epjp/i2018-11874-6 Ren, 2017, Nanocable-structured polymer/carbon nanotube composite with low dielectric loss and high impedance, Compos. Part A Appl. Sci. Manuf., 98, 66, 10.1016/j.compositesa.2017.03.014 Gholami, 2018, The effect of initial geometric imperfection on the nonlinear resonance of functionally graded carbon nanotube-reinforced composite rectangular plates, Appl. Math. Mech., 39, 1219, 10.1007/s10483-018-2367-9 Gholami, 2018, Vibration of FG-CNTRC annular sector plates resting on the Winkler-Pasternak elastic foundation under a periodic radial compressive load, Mater. Res. Express, 5 Gholami, 2018, Numerical study on the nonlinear resonant dynamics of carbon nanotube/fiber/polymer multiscale laminated composite rectangular plates with various boundary conditions, Aerosp. Sci. Technol., 78, 118, 10.1016/j.ast.2018.03.043 Tian, 2014, Graphene encapsulated rubber latex composites with high dielectric constant, low dielectric loss and low percolation threshold, J. Colloid Interface Sci., 430, 249, 10.1016/j.jcis.2014.05.034 Chen, 2013, Preparation of thermostable PBO/graphene nanocomposites with high dielectric constant, Nanotechnology, 24, 10.1088/0957-4484/24/24/245702 Fan, 2012, Graphene/poly(vinylidene fluoride) composites with high dielectric constant and low percolation threshold, Nanotechnology, 23, 10.1088/0957-4484/23/36/365702 Park, 2015, Epoxy toughening with low graphene loading, Adv. Funct. Mater., 25, 575, 10.1002/adfm.201402553 Rafiee, 2009, Buckling resistant graphene nanocomposites, Appl. Phys. Lett., 95, 10.1063/1.3269637 Zhao, 2010, Enhanced mechanical properties of graphene-based poly(vinyl alcohol) composites, Macromolecules, 43, 2357, 10.1021/ma902862u Rahman, 2013, Molecular modeling of crosslinked graphene–epoxy nanocomposites for characterization of elastic constants and interfacial properties, Compos. Part B Eng., 54, 353, 10.1016/j.compositesb.2013.05.034 Sun, 2018, Tensile behavior of polymer nanocomposite reinforced with graphene containing defects, Eur. Polym. J., 98, 475, 10.1016/j.eurpolymj.2017.11.050 Feng, 2018, Effects of reorientation of graphene platelets (GPLs) on Young's modulus of polymer composites under Bi-axial stretching, Nanomaterials, 8, 27, 10.3390/nano8010027 Ji, 2010, Micromechanics prediction of the effective elastic moduli of graphene sheet-reinforced polymer nanocomposites, Model. Simul. Mater. Sci. Eng., 18, 10.1088/0965-0393/18/4/045005 Spanos, 2015, Mechanical properties of graphene nanocomposites: a multiscale finite element prediction, Compos. Struct., 132, 536, 10.1016/j.compstruct.2015.05.078 Feng, 2017, Effects of reorientation of graphene platelets (GPLs) on Young's modulus of polymer nanocomposites under uni-axial stretching, Polymers, 9, 532, 10.3390/polym9100532 He, 2009, High dielectric permittivity and low percolation threshold in nanocomposites based on poly(vinylidene fluoride) and exfoliated graphite nanoplates, Adv. Mater., 21, 10.1002/adma.200801758 Xia, 2017, A frequency-dependent theory of electrical conductivity and dielectric permittivity for graphene-polymer nanocomposites, Carbon, 111, 221, 10.1016/j.carbon.2016.09.078 Feng, 2017, Nonlinear free vibration of functionally graded polymer composite beams reinforced with graphene nanoplatelets (GPLs), Eng. Struct., 140, 110, 10.1016/j.engstruct.2017.02.052 Kiani, 2018, Enhancement of non-linear thermal stability of temperature dependent laminated beams with graphene reinforcements, Compos. Struct., 186, 114, 10.1016/j.compstruct.2017.11.086 Wu, 2017, Dynamic instability of functionally graded multilayer graphene nanocomposite beams in thermal environment, Compos. Struct., 162, 244, 10.1016/j.compstruct.2016.12.001 Yang, 2017, Buckling and postbuckling of functionally graded multilayer graphene platelet-reinforced composite beams, Compos. Struct., 161, 111, 10.1016/j.compstruct.2016.11.048 Chen, 2017, Nonlinear vibration and postbuckling of functionally graded graphene reinforced porous nanocomposite beams, Compos. Sci. Technol., 142, 235, 10.1016/j.compscitech.2017.02.008 Feng, 2017, Nonlinear bending of polymer nanocomposite beams reinforced with non -uniformly distributed graphene platelets (GPLs), Compos. Part B Eng., 110, 132, 10.1016/j.compositesb.2016.11.024 Gholami, 2017, Large deflection geometrically nonlinear analysis of functionally graded multilayer graphene platelet-reinforced polymer composite rectangular plates, Compos. Struct., 180, 760, 10.1016/j.compstruct.2017.08.053 Shen, 2017, Nonlinear bending of functionally graded graphene-reinforced composite laminated plates resting on elastic foundations in thermal environments, Compos. Struct., 170, 80, 10.1016/j.compstruct.2017.03.001 Gholami, 2018, Nonlinear harmonically excited vibration of third-order shear deformable functionally graded graphene platelet-reinforced composite rectangular plates, Eng. Struct., 156, 197, 10.1016/j.engstruct.2017.11.019 Zhao, 2017, Bending and vibration analysis of functionally graded trapezoidal nanocomposite plates reinforced with graphene nanoplatelets (GPLs), Compos. Struct., 180, 799, 10.1016/j.compstruct.2017.08.044 Gholami, 2019, Nonlinear stability and vibration of pre/post-buckled multilayer FG-GPLRPC rectangular plates, Appl. Math. Model., 65, 627, 10.1016/j.apm.2018.08.038 Song, 2017, Free and forced vibrations of functionally graded polymer composite plates reinforced with graphene nanoplatelets, Compos. Struct., 159, 579, 10.1016/j.compstruct.2016.09.070 Yang, 2017, 3D thermo-mechanical bending solution of functionally graded graphene reinforced circular and annular plates, Appl. Math. Model., 49, 69, 10.1016/j.apm.2017.04.044 Shen, 2017, Nonlinear vibration of functionally graded graphene-reinforced composite laminated plates in thermal environments, Comput. Math. Appl. Mech. Eng., 319, 175, 10.1016/j.cma.2017.02.029 Wang, 2018, Buckling of graphene platelet reinforced composite cylindrical shell with cutout, Int. J. Struct. Stab. Dyn., 18, 10.1142/S0219455418500402 Wang, 2018, Eigenvalue buckling of functionally graded cylindrical shells reinforced with graphene platelets (GPL), Compos. Struct., 202, 38, 10.1016/j.compstruct.2017.10.005 Sahmani, 2017, A nonlocal strain gradient hyperbolic shear deformable shell model for radial postbuckling analysis of functionally graded multilayer GPLRC nanoshells, Compos. Struct., 178, 97, 10.1016/j.compstruct.2017.06.062 Wang, 2018, Torsional buckling of graphene platelets (GPLs) reinforced functionally graded cylindrical shell with cutout, Compos. Struct., 197, 72, 10.1016/j.compstruct.2018.05.056 Rafiee, 2009, Enhanced mechanical properties of nanocomposites at low graphene content, ACS Nano, 3, 3884, 10.1021/nn9010472 Weng, 2010, A dynamical theory for the Mori–Tanaka and Ponte Castañeda–Willis estimates, Mech. Mater., 42, 886, 10.1016/j.mechmat.2010.06.004 Liu, 2008, Reinforcing efficiency of nanoparticles: a simple comparison for polymer nanocomposites, Compos. Sci. Technol., 68, 1502, 10.1016/j.compscitech.2007.10.033 Taya, 2005 Seidel, 2009, A micromechanics model for the electrical conductivity of nanotube-polymer nanocomposites, J. Compos. Mater., 43, 917, 10.1177/0021998308105124 Feng, 2013, Micromechanics modeling of the electrical conductivity of carbon nanotube (CNT)–polymer nanocomposites, Compos. Part A Appl. Sci. Manuf., 47, 143, 10.1016/j.compositesa.2012.12.008 Wang, 2015, Percolation threshold and electrical conductivity of graphene-based nanocomposites with filler agglomeration and interfacial tunneling, J. Appl. Phys., 118 Wang, 2014, A continuum model with a percolation threshold and tunneling-assisted interfacial conductivity for carbon nanotube-based nanocomposites, J. Appl. Phys., 115, 10.1063/1.4878195 Hashemi, 2016, A theoretical treatment of graphene nanocomposites with percolation threshold, tunneling-assisted conductivity and microcapacitor effect in AC and DC electrical settings, Carbon, 96, 474, 10.1016/j.carbon.2015.09.103 Dyre, 1985, A simple-model of ac hopping conductivity in disordered solids, Phys. Lett. A, 108, 457, 10.1016/0375-9601(85)90039-8 Layek, 2010, Physical and mechanical properties of poly(methyl methacrylate) -functionalized graphene/poly(vinylidine fluoride) nanocomposites Piezoelectric beta polymorph formation, Polymer, 51, 5846, 10.1016/j.polymer.2010.09.067 Nayfeh, 2006, Dynamic pull-in phenomenon in MEMS resonators, Nonlinear Dyn., 48, 153, 10.1007/s11071-006-9079-z Wang, 2015 Ibrahim, 2009, Modified shooting approach to the non-linear periodic forced response of isotropic/composite curved beams, Int. J. Nonlinear Mech., 44, 1073, 10.1016/j.ijnonlinmec.2009.08.004 Reddy, 2014, Non-linear analysis of functionally graded microbeams using Eringen׳s non-local differential model, Int. J. Nonlinear Mech., 67, 308, 10.1016/j.ijnonlinmec.2014.09.014