An agent-based approach for modeling dynamics of contagious disease spread
Tóm tắt
The propagation of communicable diseases through a population is an inherent spatial and temporal process of great importance for modern society. For this reason a spatially explicit epidemiologic model of infectious disease is proposed for a greater understanding of the disease's spatial diffusion through a network of human contacts. The objective of this study is to develop an agent-based modelling approach the integrates geographic information systems (GIS) to simulate the spread of a communicable disease in an urban environment, as a result of individuals' interactions in a geospatial context. The methodology for simulating spatiotemporal dynamics of communicable disease propagation is presented and the model is implemented using measles outbreak in an urban environment as a case study. Individuals in a closed population are explicitly represented by agents associated to places where they interact with other agents. They are endowed with mobility, through a transportation network allowing them to move between places within the urban environment, in order to represent the spatial heterogeneity and the complexity involved in infectious diseases diffusion. The model is implemented on georeferenced land use dataset from Metro Vancouver and makes use of census data sets from Statistics Canada for the municipality of Burnaby, BC, Canada study site. The results provide insights into the application of the model to calculate ratios of susceptible/infected in specific time frames and urban environments, due to its ability to depict the disease progression based on individuals' interactions. It is demonstrated that the dynamic spatial interactions within the population lead to high numbers of exposed individuals who perform stationary activities in areas after they have finished commuting. As a result, the sick individuals are concentrated in geographical locations like schools and universities. The GIS-agent based model designed for this study can be easily customized to study the disease spread dynamics of any other communicable disease by simply adjusting the modeled disease timeline and/or the infection model and modifying the transmission process. This type of simulations can help to improve comprehension of disease spread dynamics and to take better steps towards the prevention and control of an epidemic outbreak.
Tài liệu tham khảo
Connolly M, Gayer M, Ryan M, Salama P, Spiegel P, Heymann D: Communicable diseases in complex emergencies: impact and challenges. Lancet. 2004, 364: 1974-1983. 10.1016/S0140-6736(04)17481-3.
Fuks H, Duchesne R, Lawniczak AT: Spatial correlations in SIR epidemic models. WSEAS MATH 2005; Cancun, Mexico. 2005
Outbreak of Measles Epidemic in UK.http://www.medindia.net/news/view_news_main.asp?x=11342
Mumps Outbreak Continues.http://www.gov.ns.ca/news/details.asp?id=20070413002
Mumps: Coming Soon to A Place Near You.http://www.fraserhealth.ca/HealthTopics/CommunicableDiseases/mumps
Ching Fu S, Milne G: Epidemic Modelling Using Cellular Automata. ACAL2003: The First Australian Conference on Artificial Life; Canberra, Australia. 2003
Kleczkowski A, Grenfell BT: Mean-field-type equations for spread of epidemics: The 'small world' model. Physica A. 1999, 274: 355-360. 10.1016/S0378-4371(99)00393-3.
Sattenspiel L: Infectious diseases in the historical archives: a modeling approach. Human Biologists in the Archives: Demography, Health, Nutrition and Genetics in Historical Populations. 2003, Cambridge SA. UK: University Press, 234-265.
Bauch CT: The Role of Mathematical Models in Explaining Recurrent Outbreaks of Infectious Childhood Diseases. Mathematical Epidemiology. Edited by: Brauer F, Driessche Pvd, Wu J. 2008, Springer-Verlag, 1945: 297-319.
Bian L, Liebner D: Simulating spatially explicit networks for dispersion of infectious diseases. GIS, Spatial Analysis and Modeling. Edited by: Maguire D, Goodchild MF, Batty M. 2005, Redlands, California: ESRI Press, 245-264.
Kermack W, McKendrick A: A Contribution to the Mathematical Theory of Epidemics. Proceedings of the Royal Society of London A. 1927, 115: 700-721.
Di Stefano B, Fuks H, Lawniczak AT: Object-Oriented Implementation of CA-LGCA Modelling Applied to the Spread of Epidemics. 2000 Canadian Conference on Electrical and Computer Engineering, IEEE. 2000, 1: 26-31.
Sirakoulis GC, Karafyllidis I, Thanailakis A: A cellular automaton model for the effects of population movement and vaccination on epidemic propagation. Ecological Modelling. 2000, 133: 209-233. 10.1016/S0304-3800(00)00294-5.
Zhen J, Quan-Xing L: A cellular automata model of epidemics of a heterogeneous susceptibility. Chinese Physics. 2006, 15: 1248-1256. 10.1088/1009-1963/15/6/019.
Bagni R, Berchi R, Cariello P: A comparison of simulation models applied to epidemics. Journal of Artificial Societies and Social Simulation. 2002, 5: 33-
Patlolla P, Gunupudi V, Mikler AR, Jacob RT: Agent-Based Simulation Tools in Computational Epidemiology. 4th International Workshop, International Conference on Innovative Internet Community Systems (I2CS '04); June 21–23; Guadalajara, Mexico. 2004, Springer Berlin/Heidelberg, 212-223.
Gordon TJ: A simple agent model of an epidemic. Technological Forecasting and Social Change. 2003, 70: 397-417. 10.1016/S0040-1625(02)00323-2.
Dunham JB: An Agent-Based Spatially Explicit Epidemiological Model in MASON. Journal of Artificial Societies and Social Simulation. 2005, 9:
Epstein JM, Axtell RL: Growing Artificial Societies: Social Science From the Bottom Up. 1996, Washington, D.C.: Brookings Institution Press MIT Press
Gilbert N, Troitzsch K: Simulation for the Social Scientists. 2005, Berkshire, England: McGraw Hill
Epstein J, Cummings D, Chakravarty S, Singa R, Burke D: Toward a Containment Strategy for Smallpox Bioterror: An Individual-Based Computational Approach. 2004, Washington, D.C.: Brookings Institution Press
Chen LC, Kaminsky B, Tummino T, Carley KM, Casman E, Fridsma D, Yahja A: Aligning Simulation Models of Smallpox Outbreaks. 2004, Tucson, AZ: Center for Computational Analysis of Social and Organizational Systems (CASOS)
Eidelson BM, Lustick I: VIR-POX: An Agent-Based Analysis of Smallpox Preparedness and Response Policy. Journal of Artificial Societies and Social Simulation. 2004, 7: 23-
Carley KM, Fridsma DB, Casman E, Yahja A, Altman N, Chen L-C, Kaminsky B, Nave D: BioWar: Scalable Agent-Based Model of Bioattacks. IEEE Transactions on Systems, Man, and Cybernetics, Part A: Systems and Humans. 2006, 36: 252-265. 10.1109/TSMCA.2005.851291.
Bomblies A, Duchemin J-B, Eltahir E: Hydrology of malaria: Model development and application to a Sahelian village. Water Resources Research. 2008, 44: 26-10.1029/2008WR006917.
Keeling M: The effects of local spatial structure on epidemiological invasions. Proceedings of the Royal Society of London B. 1999, 266: 859-867. 10.1098/rspb.1999.0716.
Chowell G, Hyman J, Eubank S, Castillo-Chavez C: Scaling laws for the movement of people between locations in a large city. Physical Review E. 2003, 68: 661021-661027. 10.1103/PhysRevE.68.066102.
Bian L: A conceptual framework for an individual-based spatially explicit epidemiological model. Environment and Planning B: Planning and Design. 2004, 31: 381-395. 10.1068/b2833.
Yang Y, Atkinson PM: An Integrated ABM and GIS Model of Infectious Disease Transmission. Computers in Urban Planning and Urban Management – CUPUM'05; 29 June – 1 July; London, England. 2005
Ferguson NM, Keeling MJ, Edmunds WJ, Gani R, Grenfell BT, Anderson RM, Leach S: Planning for smallpox outbreaks. Nature. 2003, 425: 681-685. 10.1038/nature02007.
Bian L, Liebner D: A network model for dispersion of communicable diseases. Transactions in GIS. 2007, 11: 155-173. 10.1111/j.1467-9671.2007.01039.x.
Simoes JM: Modelling the Spreading of Infectious Diseases using Mobility Networks. CUPUM 2005 The Ninth International Conference on Computers in Urban Planning and Urban Management; July; London, UK. 2005
EpiSIM – Software for Spatial Epidemic Simulation.http://www.casa.ucl.ac.uk/joanamargarida/websiteProject/
Bouden M, Moulin B, Gosselin P: The geosimulation of West Nile virus propagation: a multi-agent and climate sensitive tool for risk management in public health. International Journal of Health Geographics. 2008, 7: 35-10.1186/1476-072X-7-35.
Li Z, Hayse V, Hlohowskyj I, Smith K, Smith R: Agent-based Model for Simulation of West Nile Virus Transmission. Proceedings of the Agent 2005 Conference on Social Dynamics: Interaction, Reflexivity and Emergence; June 26–28; Chicago, USA. 2005, 14-
Vaccine-Preventable Diseases Measles.http://www.phac-aspc.gc.ca/im/vpd-mev/measles-eng.php
Yang Z, Haas Pd, Wachmann C, Soolingen Dv, Embden Jv, Andersen A: Molecular epidemiology of tuberculosis in Denmark in 1992. Journal of Clinical Microbiology. 1995, 33: 2077-2081.
Bell A, King A, Pielak K: Epidemiology of measles outbreak in British Columbia- February 1997. Canada Communicable Disease Report. 1997, 23: 49-51.
Census Canada 2001.http://www.statcan.gc.ca/
Metro Vancouver Regional District.http://www.metrovancouver.org
The Greater Vancouver transit authority.http://www.translink.bc.ca
Repast Simphony.http://repast.sourceforge.net/index.html
Kocabas V, Dragicevica S: Assessing cellular automata model behaviour using a sensitivity analysis approach. Computers, Environment and Urban Systems. 2006, 30: 921-953. 10.1016/j.compenvurbsys.2006.01.001.
Iman RL, Helton JC: An Investigation of Uncertainty and Sensitivity Analysis Techniques for Computer Models. Risk Analysis. 1988, 8: 71-90. 10.1111/j.1539-6924.1988.tb01155.x.
Crosetto M, Tarantola S, Saltelli A: Sensitivity and uncertainty analysis in spatial modelling based on GIS. Agriculture, Ecosystems and Environment. 2000, 81: 71-79. 10.1016/S0167-8809(00)00169-9.