SGLT2 inhibitors as potentially helpful drugs in PI3K inhibitor-induced diabetes: a case report
Tóm tắt
Hyperglycemia is the most common side-effect of phosphatidylinositol 3-kinase (PI3K) inhibitors that are approved for the treatment of some advanced or metastatic breast cancers. This side-effect is likely due to the central role of PI3K in insulin signalling. Here we report the use of a sodium-glucose cotransporter 2 (SGLT2) inhibitor to manage severe hyperglycemia. We describe a 74-year-old woman who developed severe uncontrolled hyperglycemia after commencing alpelisib, a new oral PI3K inhibitor indicated for a metastatic breast cancer, despite taking oral anti-diabetic drugs, metformin and vildagliptin, combined with intravenous insulin infusion of up to 250 units/day. The introduction of the SGLT2 inhibitor dapagliflozin rapidly improved blood glucose with a drastic reduction in insulin dosage, from 250 to 12 units/day, and without significant side-effects. We report the successful management of hyperglycemia induced by alpelisib using a SGLT2 inhibitor without the need to discontinue effective cancer treatment.
Tài liệu tham khảo
Markham A. Alpelisib: first global approval. Drugs. 2019;79(11):1249–53.
André F, Ciruelos E, Rubovszky G, Campone M, Loibl S, Rugo HS, et al. Alpelisib for PIK3CA-mutated, hormone receptor-positive advanced breast cancer. N Engl J Med. 2019;380(20):1929–40.
Huang X, Liu G, Guo J, Su ZQ. The PI3K/AKT pathway in obesity and type 2 diabetes. Int J Biol Sci. 2018;14(11):1483–96.
Curigliano G, Shah RR. Safety and tolerability of phosphatidylinositol-3-Kinase (PI3K) Inhibitors in oncology. Drug Saf. 2019;42(2):247–62.
Alpelisib - FDA: www.accessdata.fda.gov.
Rugo HS, André F, Yamashita T, Cerda H, Toledano I, Stemmer SM, et al. Time course and management of key adverse events during the randomized phase 3 SOLAR-1 study of PI3K inhibitor alpelisib plus fulvestrant in patients with HR-positive advanced breast cancer. Ann Oncol. 2020;31(8):1001–10.
Kim G, Yoo M, Hong MH, Lee BW, Kang ES, et al. Predictive factors for the development of diabetes in cancer patients treated with phosphatidylinositol 3-kinase inhibitors. Cancer Chemother Pharmacol. 2019;84(2):405–14.
Greenwell IB, Ip A, Cohen JB. PI3K inhibitors: understanding toxicity mechanisms and management. Oncology. 2017;31(11):821–8.
Kaneko K, Ueki K, Takahashi N, Hashimoto S, Okamoto M, Awazawa M, et al. Class IA phosphatidylinositol 3-kinase in pancreatic β cells controls insulin secretion by multiple mechanisms. Cell Metab. 2010;12(6):619–32.
Chao EC, Henry RR. SGLT2 inhibition-A novel strategy for diabetes treatment. Nat Rev Drug Discov. 2010;9(7):551–9.
Storgaard H, Gluud LL, Bennett C, Grøndahl MF, Christensen MB, Knop FK, et al. Benefits and harms of sodium-glucose co-transporter 2 inhibitors in patients with type 2 diabetes: a systematic review and meta-analysis. PLoS ONE. 2016;11(11):1–23.
Dhillon S. Dapagliflozin: a review in type 2 diabetes. Drugs. 2019;79(10):1135–46.
Bowman C, Abramson V, Wellons M. Ketoacidosis with canagliflozin prescribed for phosphoinositide 3-kinase inhibitor–induced hyperglycemia: a case report. J Investig Med High Impact Case Rep. 2017;5(3):2324709617725351.
Fleming N, Hamblin PS, Story D, Ekinci EI. Evolving evidence of diabetic ketoacidosis in patients taking sodium-glucose cotransporter 2 inhibitors. J Clin Endocrinol Metab. 2020;105:2475–86.
Johnston R, Uthman O, Cummins E, Clar C, Royle P, et al. Canagliflozin, dapagliflozin and empagliflozin monotherapy for treating type 2 diabetes: systematic review and economic evaluation. Health Technol Assess. 2017;21(2):1–218.
Wilding JPH, Rigney U, Blak BT, Nolan ST, Fenici P, et al. Glycaemic, weight, and blood pressure changes associated with early versus later treatment intensification with dapagliflozin in United Kingdom primary care patients with type 2 diabetes mellitus. Diabetes Res Clin Pract. 2019;155:107791.